Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C D 15 5 O E
a)
Ta có AB//CD => \(\frac{OA}{OC}=\frac{OB}{OD}=\frac{AB}{DC}=\frac{5}{15}=\frac{1}{3}\)(1)
=> OC=3 OA; OD=3 OB
Mà OA+OC=AC=16 => 4OA=16 => OA=4 (cm)
OD+OC=DC=12 => 4OB=12=> OB=3 (cm)
Xét tam giác AOB có: OA=4 cm ; OB=3 cm ; AB=5 cm.
Dễ thấy: \(OA^2+OB^2=AB^2\)
=> \(\widehat{AOC}=90^o\Rightarrow AC\perp BD\)mà BD// AE
=> \(AC\perp AE\)
=> Tam giác ACE vuông tại A
b)
Ta có: OC=3 AO=3.4=12 cm
OD=3.OB=3.3=9 cm
Ta có: \(S_{\Delta AOB}=\frac{1}{2}AO.OB=\frac{1}{2}.4.3=6\left(cm^2\right)\)
\(S_{\Delta AOD}=\frac{1}{2}AO.OD=\frac{1}{2}.4.9=18\left(cm^2\right)\)
\(S_{\Delta COD}=\frac{1}{2}OC.OD=\frac{1}{2}.12.9=54\left(cm^2\right)\)
\(S_{\Delta COB}=\frac{1}{2}OC.OB=\frac{1}{2}.12.3=18\left(cm^2\right)\)
=> \(S_{ABCD}=S_{\Delta AOB}+S_{\Delta AOD}+S_{\Delta COD}+S_{\Delta COB}=6+18+54+18=96\left(cm^2\right)\)