K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ta có: \(\dfrac{AD}{AB}=\dfrac{8}{15}\)

nên \(AD=\dfrac{8}{15}AB\)

Áp dụng định lí Pytago vào ΔABD vuông tại A, ta được:

\(BD^2=AD^2+AB^2\)

\(\Leftrightarrow\left(\dfrac{8}{15}AB\right)^2+AB^2=68^2=4624\)

\(\Leftrightarrow AB^2\cdot\dfrac{289}{225}=4624\)

\(\Leftrightarrow AB^2=3600\)

\(\Leftrightarrow AB=60\left(cm\right)\)

\(\Leftrightarrow AD=\dfrac{8}{15}AB=\dfrac{8}{15}\cdot60=32\left(cm\right)\)

\(\Leftrightarrow CD=60cm;BC=32cm\)

11 tháng 3 2023

A B C D

Áp dụng định lý Pitago vào `ΔABD`

`=> AD^2 + AB^2 = BC^2`

`=> AD^2 = BC^2 - AB^2 `

`=> AD^2 = 13^2 - 12^2 `

`=> AD^2 = 25`

`=> AD = 5 (`Vì `AD > 0)`

`S_(ABCD) = 5 xx 12 = 60`

NV
11 tháng 3 2023

Áp dụng định lý Pitago trong tam giác vuông ABD:

\(AD=\sqrt{BD^2-AB^2}=\sqrt{13^2-12^2}=5\)

\(S_{ABCD}=AB.AD=60\)

20 tháng 7 2019

C A B C D M N H #Hinh_anh_chi_mang_tinh_chat_minh_hoa

Từ NC = 3 NA => NC = 3/4 CA

Kẻ NH _|_CD

=> NH // AD

Theo Ta-let có

\(\frac{NH}{AD}=\frac{CN}{CA}=\frac{\frac{3}{4}CA}{CA}=\frac{3}{4}\)

\(\Rightarrow NH=\frac{3AD}{4}=\frac{3.4}{4}=3\)

Theo Pytago có \(AD^2+DC^2=AC^2\)

               \(\Leftrightarrow4^2+8^2=AC^2\)

              \(\Leftrightarrow AC^2=80\)

                \(\Leftrightarrow AC=4\sqrt{5}\)

                \(\Rightarrow NC=\frac{3}{4}AC=\frac{3}{4}.4\sqrt{5}=3\sqrt{5}\)

Áp dụng định lí Pytago \(NH^2+HC^2=NC^2\)

                                  \(\Leftrightarrow3^2+HC^2=45\)

                                \(\Leftrightarrow HC^2=36\)

                                 \(\Leftrightarrow HC=6\)

CÓ \(MC=\frac{CD}{2}=\frac{8}{2}=4\)

\(\Rightarrow HM=HC-CM=6-4=2\)

Áp dụng Pytago

\(HN^2+HM^2=NM^2\)

\(\Leftrightarrow3^2+2^2=NM^2\)

\(\Leftrightarrow MN^2=13\)

\(\Leftrightarrow MN=\sqrt{13}\)

31 tháng 5 2017

Hệ thức lượng trong tam giác vuông

Hệ thức lượng trong tam giác vuông

29 tháng 9 2017

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Hai đường chéo AC, BD cắt nhau tại H. Trong tam giác vuông ABD, ta có:

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Kẻ đường cao CK của tam giác ABC, dễ thấy KB = AB – DC = 6 - 8/3 = 10/3.

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Tam giác vuông ABD có D B 2 = A B 2 + A D 2 = 6 2 + 4 2  = 52, từ đó DB = 52 = 2 13 (cm)

NV
9 tháng 8 2021

Áp dụng định lý Pitago cho tam giác vuông ABC

\(AC=\sqrt{AB^2+BC^2}=10\left(cm\right)\)

Áp dụng hệ thức lượng cho tam giác vuông ABC với đường cao BE:

\(AB^2=AE.AC\Rightarrow AE=\dfrac{AB^2}{AC}=6,4\left(cm\right)\)

\(AB.AC=BE.AC\Rightarrow AE=\dfrac{AB.AC}{BC}=4,8\left(cm\right)\)

b.

Ta có: \(EC=AC-AE=3,6\left(cm\right)\)

Do AB song song CF, theo định lý Talet:

\(\dfrac{CF}{AB}=\dfrac{CE}{AE}\Rightarrow CF=\dfrac{AB.CE}{AE}=4,5\left(cm\right)\)

\(\Rightarrow DF=DC-CF=8-4,5=3,5\left(cm\right)\)

Áp dụng định lý Pitago cho tam giác vuông ADF:

\(AF=\sqrt{AD^2+DF^2}=\dfrac{\sqrt{193}}{2}\left(cm\right)\)

Pitago tam giác vuông BCF:

\(BF=\sqrt{BC^2+CF^2}=7,5\left(cm\right)\)

Kẻ FH vuông góc AB \(\Rightarrow ADFH\) là hình chữ nhật (tứ giác 3 góc vuông)

\(\Rightarrow FH=AD=6\left(cm\right)\)

\(S_{ABF}=\dfrac{1}{2}FH.AB=\dfrac{1}{2}.6.8=24\left(cm^2\right)\)

NV
9 tháng 8 2021

undefined