K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 4 2018

a) 

vì ABCD hình chữ nhật nên ta có AB//CD 

=> góc ABH= góc BDC ( so le trong, AB//CD)

 xét tam giác AHB,BCD có 

góc A= góc C =90

góc ABH=BDC(cmt)

=> tam giác AHB đồng dạng với tam giác CDB (gg)

b)

vì ABCD hcn nên 

AB=CD=12

BC=AD=9

AD Đlí pytado cho tam giác vuông CDB có 

BD2=BC2+DC2

BD2=81+144

BD=15cm

theo câu a) ta có

AH/AB=BC/BD

=> AH= AB.BC chia BD

AH= 12.9 chia 15

AH= 7.2CM

C)

BD

a: Xét ΔAHB vuông tại H và ΔBCD vuông tại C có

góc ABH=góc BDC

=>ΔAHB đồng dạng với ΔBCD

b: BD=căn 9^2+12^2=15cm

AH=9*12/15=108/15=7,2cm
c: Xét ΔHAD có HN/HA=HP/HD

nên NP//AD và NP=AD/2

=>NP//BC và NP=BC/2

=>NP//BM và NP=BM

=>BNPM là hình bình hành

12 tháng 5 2021

a) Xét tam giác AHB và tam giác BCD ta có:

AHB = BCD (=90^0)

ABH = BDC (AB // CD và 2 góc slt)

=> Tam giác AHB đồng dạng với tam giác BCD (G-G)

b) Tam giác BCD vuonng tại C. Áp dụng Pitago ta tính được BD = 15cm

Tam giác AHB đồng dạng với tam giác BCD (G-G)

\(\Rightarrow\dfrac{AH}{BC}=\dfrac{AB}{BD}\Rightarrow\dfrac{AH}{9}=\dfrac{12}{15}\)

=> AH = 7,2 cm

c) Tam giác AHB vuông tại H. Áp dụng Pitago ta tính được  HB = 9,6cm

\(S_{AHB}=\dfrac{1}{2}AH.HB=\dfrac{1}{2}.7,2.9,6=34,56\left(cm^2\right)\)

5 tháng 4 2015

a, Vì ABCD là hình chữ nhật nên AB// DC => góc ABD = BDC ( hai góc đối đỉnh)

Xét tam giác AHB và tam giác BCD có

      góc AHB = góc BCD =90 ĐỘ

     góc ABD = BDC ( cmtrên)

Suy ra .............( g.g)

Vì ABCD là hcn nên AB =DC =20

                              BC=AD=15

Theo định lí Pitago trong tam giác BCD

   \(BD^2=BC^2+DC^2\)

\(BD^2=20^2+15^2\)

\(BD^2=625\)

BD = 25

Theo a ta có \(\frac{AH}{AB}=\frac{BC}{BD}\)

NÊN \(AH=\frac{AB\cdot BC}{BD}\)

 \(AH=\frac{20\cdot15}{25}\)

AH=12

c, d tự trả lời

e hình như dựa một chút vào tình chất đường phân giác trong tam giác