Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
vì ABCD hình chữ nhật nên ta có AB//CD
=> góc ABH= góc BDC ( so le trong, AB//CD)
xét tam giác AHB,BCD có
góc A= góc C =90
góc ABH=BDC(cmt)
=> tam giác AHB đồng dạng với tam giác CDB (gg)
b)
vì ABCD hcn nên
AB=CD=12
BC=AD=9
AD Đlí pytado cho tam giác vuông CDB có
BD2=BC2+DC2
BD2=81+144
BD=15cm
theo câu a) ta có
AH/AB=BC/BD
=> AH= AB.BC chia BD
AH= 12.9 chia 15
AH= 7.2CM
C)
BD
a: Xét ΔAHB vuông tại H và ΔBCD vuông tại C có
góc ABH=góc BDC
=>ΔAHB đồng dạng với ΔBCD
b: BD=căn 9^2+12^2=15cm
AH=9*12/15=108/15=7,2cm
c: Xét ΔHAD có HN/HA=HP/HD
nên NP//AD và NP=AD/2
=>NP//BC và NP=BC/2
=>NP//BM và NP=BM
=>BNPM là hình bình hành
a) Xét tam giác AHB và tam giác BCD ta có:
AHB = BCD (=90^0)
ABH = BDC (AB // CD và 2 góc slt)
=> Tam giác AHB đồng dạng với tam giác BCD (G-G)
b) Tam giác BCD vuonng tại C. Áp dụng Pitago ta tính được BD = 15cm
Tam giác AHB đồng dạng với tam giác BCD (G-G)
\(\Rightarrow\dfrac{AH}{BC}=\dfrac{AB}{BD}\Rightarrow\dfrac{AH}{9}=\dfrac{12}{15}\)
=> AH = 7,2 cm
c) Tam giác AHB vuông tại H. Áp dụng Pitago ta tính được HB = 9,6cm
\(S_{AHB}=\dfrac{1}{2}AH.HB=\dfrac{1}{2}.7,2.9,6=34,56\left(cm^2\right)\)
a, Vì ABCD là hình chữ nhật nên AB// DC => góc ABD = BDC ( hai góc đối đỉnh)
Xét tam giác AHB và tam giác BCD có
góc AHB = góc BCD =90 ĐỘ
góc ABD = BDC ( cmtrên)
Suy ra .............( g.g)
Vì ABCD là hcn nên AB =DC =20
BC=AD=15
Theo định lí Pitago trong tam giác BCD
\(BD^2=BC^2+DC^2\)
\(BD^2=20^2+15^2\)
\(BD^2=625\)
BD = 25
Theo a ta có \(\frac{AH}{AB}=\frac{BC}{BD}\)
NÊN \(AH=\frac{AB\cdot BC}{BD}\)
\(AH=\frac{20\cdot15}{25}\)
AH=12
c, d tự trả lời
e hình như dựa một chút vào tình chất đường phân giác trong tam giác