K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 12 2021

P Và D  ở đâu?

18 tháng 12 2021

s A B C D N P I o M

+ Chọn mp (SAC) chứa PN .

Ta có: - (SAC) giao ( BID) = I .

                   * I ∈ SC ⊂ (SAC). 

                   * I ∈ ( BID).

Trong mp ( ABCD) có : AC cắt BD tại O .

=> Giao tuyến là OI.

Cho OI cắt PN tại đâu thì đấy là giao điểm.

 

18 tháng 12 2021

S A B C D I K M N P O H L

a/

Gọi O là giao của AC và BD

Trong mp (SAC) Nối PN \(\Rightarrow PN\in\left(SAC\right)\) (1)

Trong mp (BDI) Nối OI có

\(O\in AC;AC\in\left(SAC\right)\Rightarrow O\in\left(SAC\right)\)

\(I\in SC;SC\in\left(SAC\right)\Rightarrow I\in\left(SAC\right)\)

\(\Rightarrow OI\in\left(SAC\right)\)(2)

Ta có

\(O\in BD;BD\in\left(BDI\right)\Rightarrow O\in\left(BDI\right);I\in\left(BDI\right)\Rightarrow OI\in\left(BDI\right)\) 

Từ (1) và (2) => PN cắt OI gọi K là giao của PN với OI 

Ta có 

\(K\in PN\)

\(K\in OI;OI\in\left(BDI\right)\Rightarrow K\in\left(BDI\right)\)

=> K là giao của PN với (BDI)

b/

\(PM\in\left(SAB\right);PM\in\left(CMP\right)\) => PM là giao tuyến của (SAB) với (CMP) (1)

\(CM\in\left(SBC\right);CM\in\left(CMP\right)\) => CM là giao tuyến của (SBC) với (CMP) (2)

Ta có

\(S\in\left(SAC\right);S\in\left(SBD\right)\) và \(O\in\left(SAC\right);O\in\left(SBD\right)\) => SO là giao tuyến của (SAC) và (SBD)

Trong mp (SAC) nối CP => CP cắt SO tại H 

Ta có \(H\in SO;SO\in\left(SBD\right)\Rightarrow H\in\left(SBD\right)\)

Trong mp (SBD) nối MH cắt SD tại L

Ta có

\(MH\in\left(CMP\right);L\in MH\Rightarrow L\in\left(CMP\right)\Rightarrow PL\in\left(CMP\right);PL\in\left(SAD\right)\) => PL là giao tuyến (SAD) với (CMP) (3)

Ta có \(CL\in\left(CMP\right);CL\in\left(SCD\right)\) => CL là giao tuyến của (SCD) với (CMP) (4)

Từ (1) (2) (3) (4) => thiết diện của S.ABCD với (CMP) là tứ giác CMPL

14 tháng 10 2017

Do IJ là đường thẳng trung bình của hình thang ABCD nên IJ // AB. Hai mặt phẳng (GIJ) và (SAB) lần lượt chứa hai đường thẳng song song nên giao tuyến của chúng là đường thẳng đi qua G và song song với AB. Đường thẳng này cắt SA tại điểm M và cắt SB tại N. vậy thiết diện là hình thang MIJN, với M, N là giao điểm của đường thẳng đi qua G và song song với AB với hai đường thẳng SA, SB.

Bài tập trắc nghiệm Hình học 11 | Câu hỏi trắc nghiệm Hình học 11

Đáp án B.

6 tháng 11 2021

Ko chắc sẽ đúng

a)* Trên mp ABCD kéo dài MN và AB sao cho MN cắt AB = { I }

Xét mp (SMN) và (SAB) có:

S là điểm chung (1)

I là điểm chung (2)

=> (SMN) n (SAB) = { SI }

* Vì I thuộc mp ABCD (cmt)

G là trọng tâm tam giác SAB

Xét mp (GMN) và (SAB) có:

G và I là điểm chung

=> (GMN) n (SAB) = {GI}

 

 

7 tháng 11 2021

MN và AB // mà sao cắt nhau đc ạ

 

6 tháng 12 2017