K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 9 2023

a) Gọi \(O\) là tâm của đáy

\( \Rightarrow SO \bot \left( {ABCD} \right) \Rightarrow SO \bot AB\)

\(I\) là trung điểm của \(AB\)

\(J\) là trung điểm của \(C{\rm{D}}\)

\( \Rightarrow IJ\) là đường trung bình của hình vuông \(ABCD\)

\(\left. \begin{array}{l} \Rightarrow IJ\parallel A{\rm{D}}\\AB \bot A{\rm{D}}\end{array} \right\} \Rightarrow IJ \bot AB\)

Ta có:

\(\left. \begin{array}{l}SO \bot AB\\IJ \bot AB\end{array} \right\} \Rightarrow AB \bot \left( {SIJ} \right)\)

b) Kẻ \(IH \bot SJ\left( {H \in SJ} \right),OK \bot SJ\left( {K \in SJ} \right) \Rightarrow IH\parallel OK\)

\(O\) là trung điểm của \(IJ \Rightarrow IH = 2{\rm{O}}K\)

Ta có:

\(\left. \begin{array}{l}AB\parallel C{\rm{D}}\\C{\rm{D}} \subset \left( {SC{\rm{D}}} \right)\end{array} \right\} \Rightarrow AB\parallel \left( {SC{\rm{D}}} \right) \Rightarrow d\left( {AB,SC} \right) = d\left( {AB,\left( {SC{\rm{D}}} \right)} \right)\)

\(\begin{array}{l}\left. \begin{array}{l}\left. \begin{array}{l}AB \bot \left( {SIJ} \right)\\C{\rm{D}}\parallel AB\end{array} \right\} \Rightarrow C{\rm{D}} \bot \left( {SIJ} \right) \Rightarrow C{\rm{D}} \bot IH\\ & IH \bot SJ\end{array} \right\} \Rightarrow IH \bot \left( {SC{\rm{D}}} \right)\\ \Rightarrow d\left( {AB,C{\rm{D}}} \right) = d\left( {AB,\left( {SC{\rm{D}}} \right)} \right) = IH\end{array}\)

\(O\) là trung điểm của \(IJ\), \(IH\parallel {\rm{O}}K\)\( \Rightarrow IH = 2{\rm{O}}K\)

\(O\) là trung điểm của \(B{\rm{D}}\)

\(J\) là trung điểm của \(C{\rm{D}}\)

\( \Rightarrow OJ\) là đường trung bình của \(\Delta BCD\)

\( \Rightarrow OJ = \frac{1}{2}BC = \frac{a}{2}\)

\(\Delta ABC\) vuông tại \(B\)\( \Rightarrow AC = \sqrt {A{B^2} + B{C^2}}  = a\sqrt 2  \Rightarrow OA = \frac{1}{2}AC = \frac{{a\sqrt 2 }}{2}\)

\(\Delta SAO\) vuông tại \(O\)\( \Rightarrow SO = \sqrt {S{A^2} - O{A^2}}  = \frac{{a\sqrt 6 }}{2}\)

\(\Delta SOJ\) vuông tại \(O\) có đường cao \(OK\)

\( \Rightarrow OK = \frac{{SO.OJ}}{{\sqrt {S{O^2} + O{J^2}} }} = \frac{{a\sqrt {42} }}{{14}}\)

\( \Rightarrow d\left( {AB,C{\rm{D}}} \right) = IH = 2OK = \frac{{a\sqrt {42} }}{7}\)

21 tháng 8 2023

tham khảo

loading... 

\(SA\perp\left(SBCD\right)\) nên \(SA\perp BC\)

Mà \(BC\perp AB\) nên \(BC\perp\left(SAB\right)\)

Tam giác \(SBC\) có \(MN\) là đường trung bình nên \(MN//BC,MN=\dfrac{1}{2}BC=\dfrac{a}{2}\text{​​}\)

Suy ra:\(MN\perp\left(SAB\right)\) và \(MN\perp AM\)

Tam giác \(SCD\) có \(NP\) là đường trung bình nên \(NP//CD\)

Mà \(MN//BC,BC\perp CD\)

Suy ra \(MN\perp NP\)

Vậy \(d\left(AM,NP\right)=MN=\dfrac{a}{2}\)

22 tháng 8 2017

Giải sách bài tập Toán 11 | Giải sbt Toán 11

a) Gọi O là tâm hình vuông ABCD , dễ thấy I, O, K thẳng hàng. Vì K là trung điểm của BC nên SK ⊥ BC.

Ta có Giải sách bài tập Toán 11 | Giải sbt Toán 11

Do đó (SBC) ⊥ (SIK)

b) Hai đường thẳng AD và SB chéo nhau. Ta có mặt phẳng (SBC) chứa SB và song song với AD. Do đó khoảng cách giữa AD và SB bằng khoảng cách giữa AD và mặt phẳng (SBC).

Theo câu a) ta có (SIK) ⊥ (SBC) theo giao tuyến SK và khoảng cách cần tìm là IM, trong đó M là chân đường vuông góc hạ từ I tới SK. Dựa vào hệ thức IM. SK = SO. IK

ta có Giải sách bài tập Toán 11 | Giải sbt Toán 11

Ta lại có:

Giải sách bài tập Toán 11 | Giải sbt Toán 11 Giải sách bài tập Toán 11 | Giải sbt Toán 11

 Giải sách bài tập Toán 11 | Giải sbt Toán 11

Do đó:

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Vậy khoảng cách giữa hai đường thẳng AD và SB là bằng Giải sách bài tập Toán 11 | Giải sbt Toán 11

22 tháng 6 2021

A B C D S O I J H

a) Hình chóp đều S.ABCD có O là tâm đáy, suy ra \(SO\perp\left(ABCD\right)\Rightarrow CB\perp SO\)

Hình vuông ABCD có I,J lần lượt là trung điểm BC,AD, suy ra \(CB\perp IJ\)

Vậy \(CB\perp\left(SIJ\right)\)hay \(\left(SBC\right)\perp\left(SIJ\right).\)

b) Ta có: \(OC=\frac{CD}{\sqrt{2}}=a;SC=2a\Rightarrow\frac{OC}{SC}=\frac{1}{2}\)

\(\hept{\begin{cases}SO\perp\left(ABCD\right)\\C\in\left(ABCD\right)\end{cases}}\Rightarrow\left(SC,ABCD\right)=\widehat{SCO}=arc\cos\left(\frac{OC}{SC}\right)=60^0\)(Vì \(\widehat{SCO}< 90^0\))

b) Lấy H thuộc SI sao cho JH vuông góc SI

\(\hept{\begin{cases}AD||BC\\BC\subset\left(SBC\right)\end{cases}}\Rightarrow AD||\left(SBC\right)\)

\(\Rightarrow d\left(AD,SB\right)=d\left(AD,SBC\right)=d\left(J,SBC\right)\)

Ta thấy: SI là giao tuyến của (SIJ) và (SBC), mà \(\hept{\begin{cases}J\in\left(SIJ\right)\\JH\perp SI\end{cases}\left(H\in SI\right)}\)nên \(JH\perp\left(SBC\right)\)

Ta có \(SO=a\sqrt{3},OI=a\frac{\sqrt{2}}{2}\Rightarrow\cos\widehat{OSI}=\frac{SO}{\sqrt{SO^2+OI^2}}=\frac{\sqrt{42}}{7}\)

Suy ra \(d\left(J,SBC\right)=JH=IJ.\cos\widehat{HJI}=IJ.\cos\widehat{OSI}=\frac{\sqrt{42}a}{7}\)

Vậy \(d\left(AD,SB\right)=\frac{\sqrt{42}a}{7}.\)

22 tháng 6 2021

Chữa câu c:

\(d\left(AD,SB\right)=JH=IJ.\cos\widehat{HJI}=a\sqrt{2}.\frac{\sqrt{42}}{7}=\frac{2\sqrt{21}a}{7}\)

HQ
Hà Quang Minh
Giáo viên
22 tháng 9 2023

Ta có: \(I\) là trung điểm của \(SA\)

\(J\) là trung điểm của \(SB\)

\( \Rightarrow IJ\) là đường trung bình của tam giác \(SAB\)

\( \Rightarrow IJ\parallel AB\)

\(E\) là trung điểm của \(SC\)

\(F\) là trung điểm của \(SD\)

\( \Rightarrow EF\) là đường trung bình của tam giác \(SC{\rm{D}}\)

\( \Rightarrow EF\parallel C{\rm{D}}\)

Mà \(AB\parallel C{\rm{D}}\).

Vậy \(IJ\parallel EF\parallel AB\parallel C{\rm{D}}\).

Vậy \(AD\) không song song với \(IJ\)

Chọn C.

20 tháng 4 2022

Võ Ngọc Tú Uyênloading...  

1 tháng 6 2021

A B C D N S M P H K

a) (SAB) và (SAD) cùng vuông góc (ABCD), (SAB) và (SAB) có giao tuyến SA => SA vuông góc (ABCD)

=> BC vuông góc SA. Mà BC vuông góc AB nên BC vuông góc (SAB).

Ta cũng có BD vuông góc AS, BD vuông góc AC vì ABCD là hình vuông

=> BD vuông góc (SAC) hay (SAC) vuông góc (SBD).

b) Gọi M là trung điểm của AB, CM cắt AD tại P, H thuộc CM sao cho AH vuông góc CM, K thuộc SH sao cho AK vuông góc SH.

Dễ thấy AN || CM => AN || (SCM) => d(AN,SC) = d(AN,SCM) = d(A,SCM) = d(A,SMP)

Ta có AH vuông góc MP, MP vuông góc AS => MP vuông góc (HAS) => (SMP) vuông góc (HAS)

Vì (SMP) và (HAS) có giao tuyến SH, AK vuông góc SH tại K nên d(A,SMP) = AK

Theo hệ thức lượng thì: \(\frac{1}{AK^2}=\frac{1}{AS^2}+\frac{1}{AM^2}+\frac{1}{AP^2}\)

\(\Rightarrow d\left(AN,SC\right)=d\left(A,SMP\right)=AK=\frac{AS.AM.AP}{\sqrt{AS^2AM^2+AM^2AP^2+AP^2AS^2}}\)

\(=\frac{a\sqrt{2}.\frac{a}{2}.a}{\sqrt{2a^2.\frac{a^2}{4}+\frac{a^2}{4}.a^2+a^2.2a^2}}=\frac{a\sqrt{22}}{11}.\)

26 tháng 5 2017

Vectơ trong không gian, Quan hệ vuông góc

Vectơ trong không gian, Quan hệ vuông góc

21 tháng 8 2023

tham khảo:

Thực hành 3 trang 62 Toán 11 tập 2 Chân trời

a) Tam giác SAB có MN là đường trung bình nên MN//SA

Mà SA⊥(ABCD) nên MN⊥(ABCD). Suy ra MN⊥AB

Hình thang ABCD có NP là đường trung bình nên NP//BC//AD. Mà BC⊥AB nên NP⊥AB

Ta có AB vuông góc với hai đường thẳng MN và NP cắt nhau cùng thuộc (MNPQ) nên AB⊥(MNPQ)

b) Vì AB⊥(MNPQ);MQ∈(MNPQ) nên AB⊥MQ

Tam giác SBC có MQ là đường trung bình nên MQ//BC. Mà SA⊥BC nên SA⊥MQ

Ta có MQ vuông góc với hai đường thẳng SA và AB cắt nhau cùng thuộc (SAB) nên MQ⊥(SAB)

QT
Quoc Tran Anh Le
Giáo viên
22 tháng 9 2023

loading...

a) Trong (SAC) kẻ \(AH \bot SC \Rightarrow d\left( {A,SC} \right) = AH\)

Xét tam giác ABC vuông tại B có \(AC = \sqrt {A{B^2} + B{C^2}}  = \sqrt {{a^2} + {a^2}}  = a\sqrt 2 \)

Xét ta giác SAC vuông tại A có

\(\frac{1}{{A{H^2}}} = \frac{1}{{S{A^2}}} + \frac{1}{{A{C^2}}} = \frac{1}{{{{\left( {a\sqrt 2 } \right)}^2}}} + \frac{1}{{{{\left( {a\sqrt 2 } \right)}^2}}} = \frac{1}{{{a^2}}} \Rightarrow AH = a\)

\( \Rightarrow d\left( {A,SC} \right) = a\)

b) Ta có \(BD \bot AC,BD \bot SA\left( {SA \bot \left( {ABCD} \right)} \right) \Rightarrow BD \bot \left( {SAC} \right)\)

c) Trong (SAC) kẻ \(OK \bot SC\)

\(\begin{array}{l}OK \bot BD\left( {BD \bot \left( {SAC} \right)} \right)\\ \Rightarrow d\left( {SC,BD} \right) = OK\end{array}\)

Xét tam giác AHC vuông tại H có

O là trung điểm AC

OK // AH (cùng vuông góc SC)

\( \Rightarrow \) OK là đường trung bình \( \Rightarrow \) \(OK = \frac{1}{2}AH = \frac{a}{2}\)\( \Rightarrow d\left( {BD,SC} \right) = \frac{a}{2}\)