K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

HQ
Hà Quang Minh
Giáo viên
22 tháng 9 2023

Gọi \(O\) là tâm của đáy \( \Rightarrow SO \bot \left( {ABCD} \right) \Rightarrow SO \bot B{\rm{D}}\)

\(ABC{\rm{D}}\) là hình vuông \( \Rightarrow AC \bot B{\rm{D}}\)

\(\left. \begin{array}{l} \Rightarrow B{\rm{D}} \bot \left( {SAC} \right)\\B{\rm{D}} \subset \left( {MB{\rm{D}}} \right)\end{array} \right\} \Rightarrow \left( {MB{\rm{D}}} \right) \bot \left( {SAC} \right)\)

Chọn B.

20 tháng 4 2022

Võ Ngọc Tú Uyênloading...  

1 tháng 6 2021

A B C D N S M P H K

a) (SAB) và (SAD) cùng vuông góc (ABCD), (SAB) và (SAB) có giao tuyến SA => SA vuông góc (ABCD)

=> BC vuông góc SA. Mà BC vuông góc AB nên BC vuông góc (SAB).

Ta cũng có BD vuông góc AS, BD vuông góc AC vì ABCD là hình vuông

=> BD vuông góc (SAC) hay (SAC) vuông góc (SBD).

b) Gọi M là trung điểm của AB, CM cắt AD tại P, H thuộc CM sao cho AH vuông góc CM, K thuộc SH sao cho AK vuông góc SH.

Dễ thấy AN || CM => AN || (SCM) => d(AN,SC) = d(AN,SCM) = d(A,SCM) = d(A,SMP)

Ta có AH vuông góc MP, MP vuông góc AS => MP vuông góc (HAS) => (SMP) vuông góc (HAS)

Vì (SMP) và (HAS) có giao tuyến SH, AK vuông góc SH tại K nên d(A,SMP) = AK

Theo hệ thức lượng thì: \(\frac{1}{AK^2}=\frac{1}{AS^2}+\frac{1}{AM^2}+\frac{1}{AP^2}\)

\(\Rightarrow d\left(AN,SC\right)=d\left(A,SMP\right)=AK=\frac{AS.AM.AP}{\sqrt{AS^2AM^2+AM^2AP^2+AP^2AS^2}}\)

\(=\frac{a\sqrt{2}.\frac{a}{2}.a}{\sqrt{2a^2.\frac{a^2}{4}+\frac{a^2}{4}.a^2+a^2.2a^2}}=\frac{a\sqrt{22}}{11}.\)

26 tháng 8 2023

Ta có:\(SA\perp\left(ABCD\right)\Rightarrow SA\perp CD.\)

\(ABCD\) là hình vuông \(\Rightarrow CD\perp AD.\)

\(\Rightarrow CD\perp\left(SAD\right).\)

\(\Rightarrow A\)

26 tháng 5 2017

Vectơ trong không gian, Quan hệ vuông góc

Vectơ trong không gian, Quan hệ vuông góc

1: BD vuông góc AC

BD vuông góc SA

=>BD vuông góc (SAC)

=>(SAC) vuông góc (SBD)

QT
Quoc Tran Anh Le
Giáo viên
22 tháng 9 2023

loading...

a) Gọi \(H\) là trung điểm của \(AC\)

\(SAC\) là tam giác đều \( \Rightarrow SH \bot AC\)

Mà \(\left( {SAC} \right) \bot \left( {ABC} \right)\)

\( \Rightarrow SH \bot \left( {ABC} \right) \Rightarrow SH \bot BC\)

Lại có \(AC \bot BC\)

\(\left. \begin{array}{l} \Rightarrow BC \bot \left( {SAC} \right)\\BC \subset \left( {SBC} \right)\end{array} \right\} \Rightarrow \left( {SBC} \right) \bot \left( {SAC} \right)\)

b) \(SAC\) là tam giác đều \( \Rightarrow AI \bot SC\)

\(BC \bot \left( {SAC} \right) \Rightarrow BC \bot AI\)

\(\left. \begin{array}{l} \Rightarrow AI \bot \left( {SBC} \right)\\AI \subset \left( {ABI} \right)\end{array} \right\} \Rightarrow \left( {ABI} \right) \bot \left( {SBC} \right)\)

 

26 tháng 5 2017

Vectơ trong không gian, Quan hệ vuông góc

27 tháng 4 2022

0