Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu a thôi nhé:
do ABCDlà hbh
=> AD=BC
AB//CD=>NB//CD
AD//BC => AD//CK
vì NB//CD
=>DMMK=ADCKDMMK=ADCK (theo hệ quả ta-lét)
mà AD=BC
=> DMMK=BCCKDMMK=BCCK (*)
vì AD//CK
=> DNDK=BCCKDNDK=BCCK (theo đl ta-lét) (**)
Từ (*) và (**) ta có
DNDK=DMMKDNDK=DMMK =>MKDK=DMDNMKDK=DMDN
ta có
DMDN+DMDK=MKDK+DMDK=DKDK=1DMDN+DMDK=MKDK+DMDK=DKDK=1 (đpc
Câu b ko biết làm
P.s:Hok tốt
bn tự kẻ hình nha!
a) ta có: AB = DC ( ACBD là hình bình hành)
----> BM = CN ( = 1/2. AB = 1/2 . DC)
mà BM // CN
-----> BMNC là h.b.h
b) xét tam giác AMD và tam giác CNB
có: AM = CN ( = 1/2.AB = 1/2.CD)
AD = BC (gt)
^DAM = ^NCB (gt)
-----> tg AMD = tg CNB (c-g-c)
-----> DM = NB ( 2 cạnh t/ ư)
c) AN cắt DM tại I, MC cắt BN tại K. chứng minh : AC,BD,MN,IK
bài làm
Gọi AC cắt DB tại E
ta có: tg AMD = tg CNB (cmt)
-----> ^AMD = ^CNB
mà ^AMD = ^MDN ( AB//DC)
-----> ^CNB = ^MDN
mà ^CNB, ^MDN nằm ở vị trí đồng vị
-----> DM// BN
và DM = BN (pb)
-----> DMBN là h.b.h
-------> BD cắt MN tại E ( do 2 đường chéo của h.b.h cắt nhau tại trung điểm của mỗi đường)
tương tự bn cx chứng minh: MINK là h.b.h ( MI = NK = 1/2.DM = 1/2.BN)
-----> MN cắt IK tại E
------------> AC,BD, MN,IK đồng quy tại E
a) ABCD là hình bình hành có O là giao AC và BD
=> OA=OC; OB = OD
M, N lần lượt là trung điểm OB,OD => OM = 1/2 OB; ON = 1/2 OD
suy ra:OM = ON
Tứ giác AMCN có OA=OC; OM = ON
=> AMCN là hình bình hành
b) Tứ giác AECF có: AE // CF; AF // CE
=> AECF là hình bình hành
mà O là trung điểm AC
=> AC và EF giao tại O
Vậy AC, BD, EF đồng quy tại O
a) Tứ giác ABCD có O là giao điểm của AC và BD
=> OA = OC;
và OB = OD (1)
M là trung điểm OB => OM = 1/2 OB (2)
N là trung điểm OD => ON = 1/2 OD (3)
Từ (1), (2) và (3) suy ra: OM = ON
Tứ giác AMCN có: OA = OC; OM = ON
suy ra: AMCN là hình bình hành
b) Tứ giác AECF có: AE // CF; AF // CE
=> AECF là hình bình hành
mà O là trung điểm AC
=> AC và EF giao tại O
Vậy AC, BD, EF đồng quy tại O
a) ABCD là hình bình hành có O là giao AC và BD
=> OA=OC; OB = OD
M, N lần lượt là trung điểm OB,OD => OM = 1/2 OB; ON = 1/2 OD
suy ra:OM = ON
Tứ giác AMCN có OA=OC; OM = ON
=> AMCN là hình bình hành
b) Tứ giác AECF có: AE // CF; AF // CE
=> AECF là hình bình hành
mà O là trung điểm AC
=> AC và EF giao tại O
Vậy AC, BD, EF đồng quy tại O
a: Ta có: AM+MB=AB
CN+ND=CD
mà AB=CD
và AM=CN
nên MB=ND
Xét tứ giác BMDN có
BM//DN
BM=DN
Do đó: BMDN là hình bình hành
Suy ra: DM//BN