K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 11 2021

hongg bt lm 

29 tháng 11 2021

mình làm được rồi nhé'

cảm ơn bạn đã quan tâm

AH
Akai Haruma
Giáo viên
1 tháng 12 2021

Lời giải:

\(AC^2+BD^2=(\overrightarrow{AC})^2+(\overrightarrow{BD})^2\)

\(=(\overrightarrow{AB}+\overrightarrow{AD})^2+(\overrightarrow{BA}+\overrightarrow{BC})^2\)

\(=AB^2+AD^2+AB^2+BC^2+2\overrightarrow{AB}.\overrightarrow{AD}+2\overrightarrow{BA}.\overrightarrow{BC}\)

\(=2(a^2+b^2)+2\overrightarrow{AB}.\overrightarrow{AD}-2\overrightarrow{AB}.\overrightarrow{AD}=2(a^2+b^2)\)

 

26 tháng 8 2021

Sai thì thôi nha :>

Theo đề ra: ABCD là hình bình hành

\(vectoAD+vectoAB=vectoAC\) và \(vectoAB+vectoAC=vectoBD\)

\(\Leftrightarrow vectoAD=-vectoAB+vectoAC\)

\(\Leftrightarrow vectoAD=vectoAB+vectoAC-2vectoAB=vectoBD-2vectoAB=b-2a\)

DD
27 tháng 8 2021

\(\overrightarrow{BD}=\overrightarrow{BA}+\overrightarrow{BC}=-\overrightarrow{AB}+\overrightarrow{AD}\)

\(\overrightarrow{AC}=\overrightarrow{AB}+\overrightarrow{AD}\)

suy ra \(2\overrightarrow{AD}=\overrightarrow{BD}+\overrightarrow{AC}\Leftrightarrow\overrightarrow{AD}=\frac{\overrightarrow{BD}+\overrightarrow{AC}}{2}=\frac{a+b}{2}\).

HQ
Hà Quang Minh
Giáo viên
24 tháng 9 2023

a) \(\overrightarrow {BD}  = \overrightarrow {AD}  - \overrightarrow {AB} ;\;\overrightarrow {AC}  = \overrightarrow {AB}  + \overrightarrow {AD} .\)

b) \(\overrightarrow {AB} .\overrightarrow {AD}  = 4.6.\cos \widehat {BAD} = 24.\cos {60^o} = 12.\)

\(\begin{array}{l}\overrightarrow {AB} .\overrightarrow {AC}  = \overrightarrow {AB} (\overrightarrow {AB}  + \overrightarrow {AD} ) = {\overrightarrow {AB} ^2} + \overrightarrow {AB} .\overrightarrow {AD}  = {4^2} + 12 = 28.\\\overrightarrow {BD} .\overrightarrow {AC}  = (\overrightarrow {AD}  - \overrightarrow {AB} )(\overrightarrow {AB}  + \overrightarrow {AD} ) = {\overrightarrow {AD} ^2} - {\overrightarrow {AB} ^2} = {6^2} - {4^2} = 20.\end{array}\)

c) Áp dụng định lí cosin cho tam giác ABD ta có:

\(\begin{array}{l}\quad \;B{D^2} = A{B^2} + A{D^2} - 2.AB.AD.\cos A\\ \Leftrightarrow B{D^2} = {4^2} + {6^2} - 2.4.6.\cos {60^o} = 28\\ \Leftrightarrow BD = 2\sqrt 7 .\end{array}\)

Áp dụng định lí cosin cho tam giác ABC ta có:

\(\begin{array}{l}\quad \;A{C^2} = A{B^2} + B{C^2} - 2.AB.BC.\cos B\\ \Leftrightarrow A{C^2} = {4^2} + {6^2} - 2.4.6.\cos {120^o} = 76\\ \Leftrightarrow AC = 2\sqrt {19} .\end{array}\)

30 tháng 3 2017

Áp dụng định lí về đường trung tuyến:

OA2 = - (1)

Thay OA = , AB = a, AD = BC = b và BD = m vào (1) ta có:
\(\left(\dfrac{n}{2}\right)^2=\dfrac{b^2+a^2}{2}-\dfrac{m^2}{4}\)
\(\Leftrightarrow\dfrac{n^2}{4}+\dfrac{m^2}{4}=\dfrac{a^2+b^2}{2}\)
\(\Leftrightarrow m^2+n^2=2\left(a^2+b^2\right)\)

A B C D a b n m

 

27 tháng 3 2021

Gọi O là giao của hai đường chéo

Ta có: \(\overrightarrow{AB}=\overrightarrow{AO}+\overrightarrow{OB}\)\(\overrightarrow{AD}=\overrightarrow{AO}+\overrightarrow{OD}=\overrightarrow{AO}-\overrightarrow{OB}\)

Suy ra : \(\overrightarrow{AB}.\overrightarrow{AD}=AO^2-OB^2=3^2-4^2=-7\)

\(\Leftrightarrow AB^2.AD^2=49\)\(\Leftrightarrow AD^2=\dfrac{49}{16}\Leftrightarrow AD=\dfrac{7}{4}\)

 

NV
20 tháng 9 2021

\(\overrightarrow{NC}=2\overrightarrow{ND}=2\overrightarrow{NC}+2\overrightarrow{CD}\Rightarrow\overrightarrow{NC}=2\overrightarrow{DC}\Rightarrow\overrightarrow{CN}=2\overrightarrow{CD}\)

a.

\(\overrightarrow{DM}=\overrightarrow{DC}+\overrightarrow{CM}=\overrightarrow{AB}+\dfrac{1}{2}\overrightarrow{CB}=\overrightarrow{AB}-\dfrac{1}{2}\overrightarrow{AD}\)

\(\overrightarrow{MN}=\overrightarrow{MC}+\overrightarrow{CN}=\dfrac{1}{2}\overrightarrow{BC}+2\overrightarrow{CD}=-2\overrightarrow{AB}+\dfrac{1}{2}\overrightarrow{AD}\)

b.

\(\left\{{}\begin{matrix}\overrightarrow{AC}=\overrightarrow{AB}+\overrightarrow{AD}\\\overrightarrow{BD}=\overrightarrow{BA}+\overrightarrow{AD}=-\overrightarrow{AB}+\overrightarrow{AD}\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}\overrightarrow{AB}=\dfrac{1}{2}\overrightarrow{AC}-\dfrac{1}{2}\overrightarrow{BD}\\\overrightarrow{AD}=\dfrac{1}{2}\overrightarrow{AC}+\dfrac{1}{2}\overrightarrow{BD}\end{matrix}\right.\)

\(\Rightarrow\overrightarrow{MN}=-2\left(\dfrac{1}{2}\overrightarrow{AC}-\dfrac{1}{2}\overrightarrow{BD}\right)+\dfrac{1}{2}\left(\dfrac{1}{2}\overrightarrow{AC}+\dfrac{1}{2}\overrightarrow{BD}\right)=-\dfrac{3}{4}\overrightarrow{AB}+\dfrac{5}{4}\overrightarrow{BD}\)

NV
20 tháng 9 2021

undefined

20 tháng 9 2017

Giải bài 9 trang 59 sgk Hình học 10 | Để học tốt Toán 10

Gọi O là giao điểm của AC và BD ⇒ O là trung điểm của AC và BD.

Xét ΔABC có BO là trung tuyến

Giải bài 9 trang 59 sgk Hình học 10 | Để học tốt Toán 10

Mà O là trung điểm của BD nên BD = 2. BO ⇒ BD2 = 4. BO2

⇒ BD2 = 2.(AB2 + BC2) – AC2

⇒ BD2 + AC2 = 2.(AB2 + BC2)

⇒ m2 + n2 = 2.(a2 + b2) (ĐPCM).

13 tháng 4 2016

Áp dụng định lí về đường trung tuyến:

OA – 

Thay OA =  , AB = a

AD = BC = b và BD = m => dpcm