Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(MA^2+MB^2=\overrightarrow{MA}.\overrightarrow{MA}+\overrightarrow{MB}.\overrightarrow{MB}=\left(\overrightarrow{MI}+\overrightarrow{IA}\right)\left(\overrightarrow{MI}+\overrightarrow{IA}\right)+\left(\overrightarrow{MI}+\overrightarrow{IB}\right)\left(\overrightarrow{MI}+\overrightarrow{IB}\right)\)
\(=\overrightarrow{MI}.\overrightarrow{MI}+2\overrightarrow{MI.}\overrightarrow{IA}+\overrightarrow{IA}.\overrightarrow{IA}+\overrightarrow{MI}.\overrightarrow{MI}+2\overrightarrow{MI.}\overrightarrow{IB}+\overrightarrow{IB}.\overrightarrow{IB}\)
\(=2MI^2+IA^2+IB^2+2\overrightarrow{MI}\left(\overrightarrow{IA}+\overrightarrow{IB}\right)\)
\(=2MI^2+IA^2+IB^2\)
\(=2MI^2+\left(\frac{a}{2}\right)^2+\left(\frac{a}{2}\right)^2=a^2\)
\(\Leftrightarrow MI^2=\frac{a^2}{4}\)
Suy ra \(M\)thuộc đường tròn tâm \(I\)bán kính \(\frac{a}{2}\).
Bài 1:
a/ Gọi \(M\left(x;y\right)\Rightarrow\left\{{}\begin{matrix}MA^2=\left(x-1\right)^2+\left(y-1\right)^2\\MB^2=\left(x-9\right)^2+\left(y-7\right)^2\end{matrix}\right.\)
\(\left(x-1\right)^2+\left(y-1\right)^2+\left(x-9\right)^2+\left(y-7\right)^2=90\)
\(\Leftrightarrow x^2-10x+y^2-8y+21=0\)
\(\Leftrightarrow\left(x-5\right)^2+\left(y-4\right)^2=20\)
Quỹ tích M là đường tròn tâm \(I\left(5;4\right)\) bán kính \(R=2\sqrt{5}\)
b/ Gọi I là điểm thỏa mãn \(2\overrightarrow{IA}-3\overrightarrow{IB}=\overrightarrow{0}\Rightarrow I\left(25;19\right)\)
\(2MA^2-3MB^2=k^2\Leftrightarrow2\left(\overrightarrow{MI}+\overrightarrow{IA}\right)^2-3\left(\overrightarrow{MI}+\overrightarrow{IB}\right)^2=k^2\)
\(\Leftrightarrow2MI^2+2IA^2-3MI^2-3IB^2=k^2\)
\(\Leftrightarrow MI^2=2IA^2-3IB^2-k^2=600-k^2\)
- Với \(k^2=600\Rightarrow M\) trùng I
- Với \(k^2>600\Rightarrow\) ko tồn tại điểm M thỏa mãn
- Với \(k^2< 600\Rightarrow\) quỹ tích M là đường tròn tâm \(I\left(25;19\right)\) bán kính \(R=\sqrt{600-k^2}\)
Bài 1:
Do hệ số \(a>0\Rightarrow y_{max}\) tại 1 trong 2 đầu mút của đoạn xét
Mà \(-\frac{b}{2a}=1\); ta có \(1-\left(-1\right)>2-1\) nên \(y\) đạt max tại \(x=-1\)
\(y\left(-1\right)=1+2+m^2+m-5=0\)
\(\Leftrightarrow m^2+m-2=0\Rightarrow\left[{}\begin{matrix}m=1\\m=-2\end{matrix}\right.\)
Câu 2:
Gọi G là trọng tâm tam giác ABC
\(P=MA^2+MB^2+MC^2=\overrightarrow{MA}^2+\overrightarrow{MB}^2+\overrightarrow{MC}^2\)
\(=\left(\overrightarrow{MG}+\overrightarrow{GA}\right)^2+\left(\overrightarrow{MG}+\overrightarrow{GB}\right)^2+\left(\overrightarrow{MG}+\overrightarrow{GC}\right)^2\)
\(=3MG^2+GA^2+GB^2+GC^2+2\overrightarrow{MG}\left(\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}\right)\)
\(=3MG^2+GA^2+GB^2+GC^2\)
Do \(G\) cố định \(\Rightarrow P_{min}\Leftrightarrow MG_{min}\Rightarrow M\) là chân đường cao hạ từ \(G\) xuống BC \(\Rightarrow M\) là trung điểm BC