Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bạn tự vẽ hình
a) Vì tứ giác ABCD là hình bình hành (gt)
=> BC//AD hay BN//MD (1)
BC=AD
Mà BN=\(\frac{1}{2}\)BC (vì N là trung điểm của BC)
MD=\(\frac{1}{2}\)AD(vì M là trung điểm của AD)
=> BN=MD (2)
Từ (1) , (2) suy ra: Tứ giác BNDM là hbh
Xét \(\Delta\)ADQ có: MP//DQ(vì BNDM là hbh(cmt))
MA=MD(gt)
=> AP=PQ(3)
Chứng minh tương tự ta cũng có: PQ=QC (4)
Từ (3) và (4) suy ra: AP=PQ=QC
b) Xét \(\Delta\)APM và \(\Delta\) CQN có:
AM=NC
^ MAP=^NCQ(soletrong do AD//BC)
AP=CQ(cmt)
=>\(\Delta\)APQ=\(\Delta\)CQN (g.c.g)
=>MP=QN
Tứ giác MPNQ có: MP//QN(vì BNQM là hbh(cmt))
MP=QN(cmy)
=> Tứ giác MPNQ là hbh
ta có ABCD là hình bình hành
=> AD//BC,ad=bc
mà MN là trung điểm AD,BC
=> DM//BN,DM=B1
=>DMBN là hình bình hành
=.BM//DN->PM//DQ
Mà m là trung điểm AD
MP là trung điểm AD
P là trung điểm AQ
PA=PQ
tương tự cq=cp
AP=PQ=QC
a/ Xét tam giác PCB có QN là đường trung bình
=> PQ=QC (1)
Xét tam giác AQD có MP là đường trung bình
=> AP=PQ (2)
Từ (1) và (2) => AP=PQ=QC
b/ Ta có MP//QN vì MBND là hình bình hành
Xét tam giác QCD và tam giác PQB có:
Góc PAB = QCD (so le trong)
AB=DC (gt)
Góc ABP=CDQ (so le trong)
=> Tam giác QCD = Tam giác PQB (c.g.c)
=> BP=QD (1)
Mà theo cmt (a) ta có:
MP=1/2 QD
QN=1/2 BP
Từ (1) => MP=QN
Vậy tứ giác MBND là hình bình hành
Vì ABCD là hình bình hành
=>BC//AD hay BN//MD(1)
BC=AD
Mà BN=1/2BC( Vì N là trung điểm của BC)
MD=1/2AD (Vì M là trung điểm của AC)
=>BN=MD(2)
Từ (1) và (2) suy raBNDM là hình bình hành
Xét tam giác ADQcó:MP//DQ(vì BNDM là hbh(cmt)
=> MA=MD
=>AP=PQ(3)
CM tương tự ta được:PQ=QC(4)
Từ (3) và (4) suy ra AP=PQ=QC
b,Xét tam giác APM và tam giác CQNcó
AM=NC
Góc MAP=Góc NCQ(so le trong)
AP=CQ
=>Tam giác APM= tam giác CQN
=>MP=QN
Tứ giác MPQN có MP//QN( vì BNQM là hbh)
MP=QN
=> Tứ giác MPNQ là hình bình hành
Mình không biết làm ý c,d
Bạn tự vẽ hình nha!!
a) Áp dụng tính chất đường trung bình của tam giác cho DABC và DDBC ta sẽ có:
MQ//PN//BC và MQ = PN = 0.5BC ÞMPNQ là hình bình hành.
b) Tương tự ta có QN//MP//AD và QN = MP = 0.5AD.
Nên để MPNQ là hình thoi thì MN ^ PQ khi đó MN ^ CD và trung trực hay trục đối xứng của AB và CD.
Þ hình thang ABCD là hình thang cân
Lời giải :
Để \(MPNQ\) là hình chữ nhật thì \(MN=PQ\)
Ta có : \(AM=\dfrac{1}{2}AD=\dfrac{1}{2}BC=BN\) , \(AM\) song song với BN \(\Rightarrow AMNB\) là hình bình hành \(\Rightarrow AB=MN\Rightarrow MN=CD\)
Ta lại có : \(AP=PQ=QC\) ( cmt ) \(\Rightarrow PQ=\dfrac{1}{3}AC\)
\(\Rightarrow CD=MN=PQ=\dfrac{1}{3}AC\)
\(\dfrac{CA}{CD}=3\) thì MPNQ là hình chữ nhật
làm phần a hộ đko ạ