K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 4 2021

Lời giải :

Để \(MPNQ\) là hình chữ nhật thì \(MN=PQ\)

Ta có : \(AM=\dfrac{1}{2}AD=\dfrac{1}{2}BC=BN\) , \(AM\) song song với BN \(\Rightarrow AMNB\) là hình bình hành \(\Rightarrow AB=MN\Rightarrow MN=CD\) 

Ta lại có : \(AP=PQ=QC\) ( cmt ) \(\Rightarrow PQ=\dfrac{1}{3}AC\)

\(\Rightarrow CD=MN=PQ=\dfrac{1}{3}AC\)

\(\dfrac{CA}{CD}=3\) thì MPNQ là hình chữ nhật

25 tháng 12 2021

làm phần a hộ đko ạ

 

26 tháng 7 2016

bạn tự vẽ hình

a) Vì tứ giác ABCD là hình bình hành (gt)

=> BC//AD hay BN//MD  (1)

     BC=AD

Mà BN=\(\frac{1}{2}\)BC (vì N là trung điểm của BC)

      MD=\(\frac{1}{2}\)AD(vì M là trung điểm của AD)

=> BN=MD  (2)

Từ (1) , (2) suy ra: Tứ giác BNDM là hbh

Xét \(\Delta\)ADQ có: MP//DQ(vì BNDM là hbh(cmt))

                        MA=MD(gt)

=> AP=PQ(3)

Chứng minh tương tự ta cũng có: PQ=QC (4)

Từ (3) và (4) suy ra: AP=PQ=QC

b) Xét \(\Delta\)APM và \(\Delta\) CQN có:

      AM=NC

      ^ MAP=^NCQ(soletrong do AD//BC)

      AP=CQ(cmt)

=>\(\Delta\)APQ=\(\Delta\)CQN (g.c.g)

=>MP=QN

Tứ giác MPNQ có: MP//QN(vì BNQM là hbh(cmt))

                               MP=QN(cmy)

=> Tứ giác MPNQ là hbh

23 tháng 10 2022

ta có ABCD là hình bình hành
=> AD//BC,ad=bc 
mà MN là trung điểm AD,BC
=> DM//BN,DM=B1
=>DMBN là hình bình hành 
=.BM//DN->PM//DQ
Mà m là trung điểm AD
MP là trung điểm AD
P là trung điểm AQ
PA=PQ
tương tự cq=cp
AP=PQ=QC

28 tháng 2 2015

a/ Xét tam giác PCB có QN là đường trung bình 

=> PQ=QC (1) 

Xét tam giác AQD có MP là đường trung bình 

=> AP=PQ (2)

Từ (1) và (2) => AP=PQ=QC

b/ Ta có MP//QN vì MBND là hình bình hành

Xét tam giác QCD và tam giác PQB có:

Góc PAB = QCD (so le trong)

AB=DC (gt)

Góc ABP=CDQ (so le trong)

=> Tam giác QCD = Tam giác PQB (c.g.c)

=> BP=QD (1)

Mà theo cmt (a)  ta có:

MP=1/2 QD

QN=1/2 BP 

Từ (1) => MP=QN

Vậy tứ giác MBND là hình bình hành

Bài 5: Cho hình bình hành ABCD. Trên đưởng chéo AC chọn hai điểm E và F saocho AE=EF=FC.a) Tứ giác BEDF là hình gì?b) Chứng minh tam giác CFD= tam giác AEBc) Chứng minh tam giác CFB= tam giác EADBài 7: Cho tam giác ABC có AB=6, AC=8, BC=10.a) Xác định D sao cho BDCA là hình vuông.b) Tính độ dài DA.c) Tính diện tích ABCD.Bài 8: Cho hình thang ABCD. Hai đường chéo AC và BD cắt nhau tại O.a) Xác định O để ABCD là hình bình...
Đọc tiếp

Bài 5: Cho hình bình hành ABCD. Trên đưởng chéo AC chọn hai điểm E và F sao
cho AE=EF=FC.
a) Tứ giác BEDF là hình gì?
b) Chứng minh tam giác CFD= tam giác AEB
c) Chứng minh tam giác CFB= tam giác EAD

Bài 7: Cho tam giác ABC có AB=6, AC=8, BC=10.
a) Xác định D sao cho BDCA là hình vuông.
b) Tính độ dài DA.
c) Tính diện tích ABCD.
Bài 8: Cho hình thang ABCD. Hai đường chéo AC và BD cắt nhau tại O.
a) Xác định O để ABCD là hình bình hành.
b) Hình bình hành ABCD cần thêm điều kiện gì để trở thành hình thoi.
c) Cho hình thoi ABCD có góc ABC=90 0 . Hỏi tứ giác ABCD đã trở thành hình
gì?

Bài 10: Cho tam giác ABC vuông tại A. Kẻ đường cao AH. Gọi D, E là các hình
chiếu của H trên AB, AC và M, N theo thứ tự là các trung điểm của các đường thẳng
BH, CH.
a) Chứng minh tứ giác MDEN là hình thang vuông.
b) Gọi P là giao điểm của đường thẳng DE với đường cao AH và Q là trung điểm
của đường thẳng MN. Chứng minh PQ vuông góc DE.
c) Chứng minh hệ thức 2PQ = MD + NE.

Bài 13: Qua đỉnh A của hình vuông ABCD ta kẻ hai đường thẳng Ax, Ay vuông góc
với nhau. Ax cắt cạnh BC tại điểm P và cắt tia đối của tia CD tại điểm Q. Ay cắt tia
đối của tia BC tại điểm R và cắt tia đối của tia DC tại điểm S.
a) Chứng minh các tam giác APS, AQR là các tam giác cân.
b) Gọi H là giao điểm của QR và PS; M, N theo thứ tự là trung điểm của QR, PS.
Chứng minh tứ giác AMHN là hình chữ nhật.
Bài 14: Cho tứ giác ABCD có M, N, P, Q lần lượt là trung điểm của AB, BC, CA,
AD.
a) Tứ giác MNPQ là hình gì?
b) Gọi M là trung điểm của DB, AD=6, AB=8. Cho DBAM. Tính QM.
Bài 15: Cho tam giác ABC. Gọi M, N lần lượt là trung điểm của AB và AC.
a) Tứ giác BMNC là hình gì? Vì sao?
b) Lấy điểm E đối xứng với M qua N. Chứng minh tứ giác AECM là hình bình
hành.
c) Tứ giác BMEC là hình gì? Vì sao?
d) Tam giác ABC cần thêm điều kiện gì thì tứ giác AECM là hình vuông? Vẽ
hình minh hoạ.

Mong mn giúp mk vs ah

1

đây là nhóm hỏi những bài khó chứ không phải nơi chép bài của những bạn lười nhé

29 tháng 10 2021

Bạn nói hay đó

Đc của ló

 

22 tháng 11 2018

Vì ABCD là hình bình hành

=>BC//AD hay BN//MD(1)

BC=AD

Mà BN=1/2BC( Vì N là trung điểm của BC)

MD=1/2AD (Vì M là trung điểm của AC)

=>BN=MD(2)

Từ (1) và (2) suy raBNDM là hình bình hành

Xét tam giác ADQcó:MP//DQ(vì BNDM là hbh(cmt)

=> MA=MD

=>AP=PQ(3)

CM tương tự ta được:PQ=QC(4)

Từ (3) và (4) suy ra AP=PQ=QC

b,Xét tam giác APM và tam giác CQNcó

AM=NC

Góc MAP=Góc NCQ(so le trong)

AP=CQ

=>Tam giác APM= tam giác CQN

=>MP=QN

Tứ giác MPQN có MP//QN( vì BNQM là hbh)

MP=QN

=> Tứ giác MPNQ là hình bình hành

Mình không biết làm ý c,d

Bạn tự vẽ hình nha!!

22 tháng 11 2018

câu c là xác định tỉ số của CA/CD để MNPQ là hbh

d, Xác định góc ACD để MNPQ là hbh

mong mọi người giải hộ em

21 tháng 1 2019

a) Áp dụng tính chất đường trung bình của tam giác cho DABC và DDBC ta sẽ có:

MQ//PN//BC và MQ = PN = 0.5BC ÞMPNQ là hình bình hành.

b) Tương tự ta có QN//MP//AD và QN = MP = 0.5AD.

Nên để MPNQ là hình thoi thì MN ^ PQ khi đó MN ^ CD và trung trực hay trục đối xứng của AB và CD.

Þ hình thang ABCD là hình thang cân