Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét tứ giác ABEF có
AF//BE
AF=BE
Do đó: ABEF là hình bình hành
mà AB=AF
nên ABEF là hình thoi
A F B C D E M 1 1 1 2
a, Ta có do: AD=2AB mà AD=2AF nên AF=AB
Mặt khác AF=BE(tự cm) và AB=EF nên AF=BE=AB=EF
suy ra AFEB là hình thoi suy ra \(AE\perp BF\)
b, ABCD là hình bình hành nên \(\widehat{A}=\widehat{C_1}=60^o\)(1)
Mà AF=AB nên \(\Delta AFB\)cân tại A có góc A =60 độ nên tam giác AFB đều suy ra \(\widehat{AFB}=60^o\)
mặt khác AD//BC \(\Rightarrow\widehat{AFB}=\widehat{FBE}=60^o\)(2)
Từ (1) và (2) suy ra FDCB là hình thang cân.
c, Ta có AB=BM=DC mà BM//DC nên BDCM là hình bình hành
lại có:
BF=AF mà AF=FD nên FD=BF suy ra \(\Delta FDB\)cân tại F \(\Rightarrow\widehat{D_1}=\widehat{B_1}=\frac{180^o-\widehat{BFD}}{2}=30^o\)
(đoạn này làm hơi tắt bạn tự tìm hiểu và triển khai nha)
Mà \(\widehat{D_1}+\widehat{D_2}=\widehat{ADC}=120^o\Rightarrow\widehat{D_2}=90^o\)
(đoạn này làm hơi tắt bạn tự tìm hiểu và triển khai nha)
Hình bình hành BDCM có góc D2=90 độ nên BDCM là hình chữ nhật
a: Xét tứ giác ABEF có
BE//AF
BE=AF
BE=BA
Do đó; ABEFlà hình thoi
=>AE vuông góc với BF
b: Xét ΔABF có AB=AF và góc FAB=60 độ
nên ΔABF đều
=>góc BFD=120 độ=góc CDF
Xét tứ giác BCDF có
BC//DF
góc BFD=góc D=120 độ
Do đó: BCDF là hình thang cân
c: Xét ΔBAD có
BF là trung tuyến
BF=AD/2
Do đó ΔBAD vuông tại B
=>góc MBD=90 độ
Xét tứ giác BMCD co
BM//CD
BM=CD
góc MBD=90 độ
Do đó; BMCD là hình chữ nhật
=>BC cắt MD tại trung điểm của mỗi đường
=>M,E,D thẳng hàng
a: Xét tứ giác ABEF có
BE//AF
BE=AF
BE=BA
Do đó; ABEFlà hình thoi
=>AE vuông góc với BF
b: Xét ΔABF có AB=AF và góc FAB=60 độ
nên ΔABF đều
=>góc BFD=120 độ=góc CDF
Xét tứ giác BCDF có
BC//DF
góc BFD=góc D=120 độ
Do đó: BCDF là hình thang cân
c: Xét ΔBAD có
BF là trung tuyến
BF=AD/2
Do đó ΔBAD vuông tại B
=>góc MBD=90 độ
Xét tứ giác BMCD co
BM//CD
BM=CD
góc MBD=90 độ
Do đó; BMCD là hình chữ nhật
=>BC cắt MD tại trung điểm của mỗi đường
=>M,E,D thẳng hàng
a: Xét tứ giác BEFA có
BE//AF
BE=FA
BE=BA
=>BEFA là hình thoi
b: góc B=180-60=120 độ
=>góc IBE=60 độ
mà IB=BE
nên ΔIBE đều
=>góc EIB=60 độ=góc A
=>AIEF là hình thang cân
c:
Xét ΔABD có
BF là trung tuyến
BF=AD/2
Do đo: ΔABD vuông tại B
Xét tứ giác BICD có
BI//CD
BI=CD
góc IBD=90 độ
Do đó: BICD là hình chữ nhật
d: Xét ΔAED có
EF là trung tuyến
EF=AD/2
=>ΔAED vuông tại E
=>góc AED=90 độ
Help me please 😭
tham khảo
a) Ta có: (F là trung điểm của AD)
(E là trung điểm của BC)
mà AD=BC(Hai cạnh đối trong hình bình hành ABCD)
nên AF=BE
Xét tứ giác AFEB có
AF//BE(AD//BC, F∈AD, E∈BC)
AF=BE(cmt)
Do đó: AFEB là hình bình hành(Dấu hiệu nhận biết hình bình hành)
Ta có: (gt)
mà (F là trung điểm của AD)
nên AB=AF
Hình bình hành AFEB có AB=AF(cmt)
nên AFEB là hình thoi(Dấu hiệu nhận biết hình thoi)
⇒Hai đường chéo AE và BF vuông góc với nhau tại trung điểm của mỗi đường(Định lí hình thoi)
hay AE⊥BF(đpcm)
b) Ta có: AFEB là hình thoi(cmt)
nên AF=FE=EB=AB và (Số đo của các cạnh và các góc trong hình thoi AFEB)
hay
Xét ΔFEB có FE=EB(cmt)
nen ΔFEB cân tại E(Định nghĩa tam giác cân)
Xét ΔFEB cân tại E có (cmt)
nên ΔFEB đều(Dấu hiệu nhận biết tam giác cân)
⇒(Số đo của một góc trong ΔFEB đều)
Ta có: AB//FE(hai cạnh đối trong hình thoi ABEF)
nên (hai góc đồng vị)
hay
Ta có: tia FE nằm giữa hai tia FB,FD
nên
(1)
Ta có: AD//BC(hai cạnh đối trong hình bình hành ABCD)
nên (hai góc trong cùng phía bù nhau)
hay (2)
Từ (1) và (2) suy ra
Xét tứ giác BFDC có
FD//BC(AD//BC, F∈AD)
nên BFDC là hình thang có hai đáy là FD và BC(Định nghĩa hình thang)
Hình thang BFDC có (cmt)
nên BFDC là hình thang cân(Dấu hiệu nhận biết hình thang cân)