Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét tứ giác AMNB có
AM//NB
AM=NB
Do đó: AMNB là hình bình hành
mà AM=AB
nên AMNB là hình thoi
b: Xét tứ giác MDCN có
MD//CN
MD=CN
Do đó; MDCN là hình bình hành
mà DM=DC
nên MDCN là hình thoi
=>MD=NM
mà NM=AM
nên NM=AM=MD
=>NM=AD/2
Xét ΔAND có
NM là đường trung tuyến
NM=AD/2
Do đó: ΔAND vuông tại N
a: Xét tứ giác AMNB có
BN//AM
BN=AM
Do đó: AMNB là hình bình hành
mà BN=AB
nên AMNB là hình thoi
a: Xét tứ giác ABEF có
BE//AF
BE=AF
BE=BA
Do đó: ABEF là hình thoi
b: Xét ΔIBE có IB=BE và góc IBE=60 độ
nên ΔIBE đều
=>IE=BE=AF
Bài 2 :
A B C D M E
a, Xét tam giác ABC ta có :
D là trung điểm AB
M là trung điểm CB
=)) DM là đường TB tam giác ABC
=)) DM // AC hay DM // AE (1)
Ta có : E là trung điểm AC
M là trung điểm BA
=)) EM là đường TB tam giác ABC
=)) EM // AB hay EM // AD (2)
Từ 1;2 =)) Tứ giác ADME là hình bình hành
b, Nếu tam giác ABC cân tại A => AM là đường trung tuyến AM
=)) AM đồng thời là tia phân giác của ^A
Xét hình bình hành ADME có 2 đường chéo AM là tia phân giác của ^A (cmt)
=)) Tứ giác ADME là hình thoi
c, Nếu tam giác ABC vuông tại A => ^A = 90^0
Xét hình bình hành ADME có ^A =90^0
=)) Tứ giác ADME là hình chữ nhật
2/
a/ hình thang ABCD có
AB // EF
==> AB // KF
xét tam giác ABC có
F là trung điểm của BC
AB // KF
==> KF là đường trung bình của tam giác ABC
==> K là trung điểm của AC
==> AK = KC
b/
E là trung điểm AD
F là trung điểm BC
==> EF là đường trung bình của hình thang ABCD
==> EF = (AB + CD) / 2 = (4 + 10) / 2 = 7(cm)
KF là đường trung bình của tam giác ABC nên
KF = AB / 2 = 4 / 2 = 2(cm)
==> EK = EF - KF = 7 - 2 = 5(cm)
vậy EK = 5(cm), KF = 2 (cm)
3/
a/ ta có
D là trung điểm của AB
M là trung điểm của BC
==> DM là đường trung bình của tam giác ABC
==> Dm // AC
==> DM // AE ( E thuộc AC, DM // AC)
chứng minh tương tự ta có
ME là đường trung bình của tam giác ABC
==> AD // ME
tứ giác ADME có DM // AE, AD // ME nên là HBH
b/ ( nếu tam giác ABC cân tại A)
tam giác ABC cân tại A ==> AB = AC
AD = 1/2 AB (D là trung điểm của AB)
AE = 1/2 AC (E là trung điểm của AC)
==> AD = AE
c/ (nếu tam giác ABC vuông)
ta có
tứ giác ADME là HBH
góc A = 90 độ
==> tứ giác ADME là HCN
d/ ta có
AB^2 + AC^2 = BC^2
6^2 + 8^2 = 100
==> BC = 10(cm)
AM là đường trung tuyến của tam giác ABC
==> AM = 1/2 BC = 1/2 . 10 = 5(cm)
vậy AM = 5cm
Bài 2:Cho mk ý kiến,sai đề à???4cm=6cm nhé
Bài 3:
Bài 4:
Nối D với E, nối D với M:
Chứng minh được ED//FB (BEDF là hình thoi) (1)
BF là đường trung bình tam giác AMD
=> MD//FB (tc) (2)
(1),(2) => MD trùng với ED (định lý) ( Qua 1 điểm ko thuộc đường thẳng a có 1 và chỉ 1 đường thẳng đi qua điểm đó và song song với đường thẳng a )
từ đó bạn có thể cm BMCD là hình chữ nhật ( nếu cần )
( xét từ1 giác BDCM có BC cắt DM tại trung điểm của mỗi đoạn ->BMCD là Hình chữ nhật)
Bài 5:
Bài 1:
a: Xét tứ giác ECDF có
EC//FD
EC=FD
Do đó: ECDF là hình bình hành
mà FD=DC
nên ECDF là hình thoi
b: Xét tứ giác ABED có EB//AD
nên ABED là hình thang
c: Xét ΔAED có
EF là đường trung tuyến
EF=AD/2
Do đó: ΔAED vuông tại E
2:
a: Xét tứ giác ADME có
\(\widehat{ADM}=\widehat{AEM}=\widehat{DAE}=90^0\)
=>ADME là hình chữ nhật
b: Hình chữ nhật ADME trở thành hình vuông khi AM là phân giác của góc BAC
Xét ΔABC có
AM là đường trung tuyến
AM là đường phân giác
Do đó: ΔABC cân tại A
=>AB=AC
3:
\(ab\left(a+b\right)-bc\left(b+c\right)-ac\left(c-a\right)\)
\(=a^2b+ab^2-b^2c-bc^2+ac\left(a-c\right)\)
\(=\left(a^2b-bc^2\right)+\left(ab^2-b^2c\right)+ac\left(a-c\right)\)
\(=b\left(a^2-c^2\right)+b^2\left(a-c\right)+ac\left(a-c\right)\)
\(=b\left(a-c\right)\left(a+c\right)+\left(a-c\right)\left(b^2+ac\right)\)
\(=\left(a-c\right)\left(ba+bc+b^2+ac\right)\)
\(=\left(a-c\right)\left[\left(ba+b^2\right)+\left(bc+ac\right)\right]\)
\(=\left(a-c\right)\left[b\left(a+b\right)+c\left(a+b\right)\right]\)
1:
a: Ta có: ABCD là hình bình hành
=>AD=BC(1)
Ta có: M là trung điểm của AD
=>\(MA=MD=\dfrac{AD}{2}\left(2\right)\)
Ta có:N là trung điểm của BC
=>\(NB=NC=\dfrac{BC}{2}\)(3)
Từ (1),(2),(3) suy ra AM=MD=CN=NB
Xét tứ giác AMNB có
AM//NB
AM=NB
Do đó: AMNB là hình bình hành
Hình bình hành AMNB có AM=AB(=AD/2)
nên AMNB là hình thoi
b: Ta có: AMNB là hình thoi
=>MN=AM
mà \(AM=\dfrac{AD}{2}\)
nên \(NM=\dfrac{AD}{2}\)
Xét ΔNAD có
NM là đường trung tuyến
\(NM=\dfrac{AD}{2}\)
Do đó: ΔNAD vuông tại N
=>AN\(\perp\)ND
c:
Ta có: AB=DC
AB=AI
Do đó: DC=AI
Ta có: AB//DC
I\(\in\)AB
Do đó: IA//DC
Xét ΔABN có BA=BN(=BC/2) và \(\widehat{B}=60^0\)
nên ΔBAN đều
=>\(AN=BN=\dfrac{BC}{2}\)
Xét ΔBAC có
AN là đường trung tuyến
\(AN=\dfrac{BC}{2}\)
Do đó: ΔBAC vuông tại A
=>BA\(\perp\)AC
=>CA\(\perp\)AI
Xét tứ giác AIDC có
AI//DC
AI=DC
Do đó: AIDC là hình bình hành
Hình bình hành AIDC có \(\widehat{IAC}=90^0\)
nên AIDC là hình chữ nhật
B A C D N M O 60* a
a) tứ giác AMNB
có BN // AM (BC // AD)
BN = AM (BC=AD, N;M là Tđiểm BC;AD)
=> AMNB là HBH
2AB = AD, 2AM = AD => AM =AB
=> AMNB là HThoi ( vì là HBH có 2 cạnh kề = nhau )
b) AMNB là Hthoi
=> AN là tia Phân giác của ^BNM
^BNM = 120* (là góc TCP vs ^B)
=> ^ANM = ^BNM /2 = 120*/2 = 60*
t/ tự ta có MNCD là Hthoi
=> ND là tia Phân giác của ^MNC
^MNC = 60* (là góc TCP vs ^NCD, mà ^NCDlà góc TCP vs ^B)
=> ^MND = ^MNC/2 = 30*
có ^AND = ^ANM + ^MND = 60* + 30* = 90*
=> AN vuông vs N
tam giác BAN cân tại B ( AB = BN t/c Hthoi )
^B =60* (gt)
=> tg BAN đều
=> AN = BA
AB = CD (t/c HBH )
=> AN = CD
^ANC = ^ANM + ^MNC , ^MNC =60*= ^B (2 góc đồng vị)
=> ^ANC = 60* +60* =120*
xét tg ANC và tg NCD
có NC chung
^ANC = ^NCD (=120*)
AN = CD (cmt)
=> tg ANC = tg NCD (cgc)
=> AC = ND ( 2 cạnh t/ứ)
c) gọi O là giao cuả BM và AN
có AMNB là Hthoi (cm câu a)
=> BM vuông vs AN (t/c Hthoi)
BM cắt AN tại trung điểm mỗi đường
=> O là trung điểm AN
có tam giác BAN đều (cm câu b)
=> AN = AB = a
mà O là trung điểm AN (cmt).
=> AO = ON = AN/2 = a/2
xét tg BON vuông tại O
có \(BO^2+ON^2=BN^2=>BO^2=BN^2-ON^2=a^2-\left(\dfrac{a}{2}\right)^2=\dfrac{3a^2}{4}=>BN=\dfrac{\sqrt{3}a}{2}\)
có O là trung điểm BM (T/C Hthoi )
=> BM = 2BO = 2\(\dfrac{\sqrt{3}a}{2}\)=\(\sqrt{3}a\)
S Hthoi ABMN = \(\dfrac{1}{2}AN.BM=\dfrac{1}{2}a.\sqrt{3}a=\dfrac{a^2\sqrt{3}}{2}\)
xét tứ giác AMDN có BN // MD, BN = MD =a
=> AMDN là HBH
=> BM = ND ( t/c HBH )
=> ND = \(\sqrt{3}a\)
S tam giác AND = \(\dfrac{1}{2}AN.ND=\dfrac{1}{2}a.\sqrt{3}a=\dfrac{a^2\sqrt{3}}{2}\)