Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
B A C D N M O 60* a
a) tứ giác AMNB
có BN // AM (BC // AD)
BN = AM (BC=AD, N;M là Tđiểm BC;AD)
=> AMNB là HBH
2AB = AD, 2AM = AD => AM =AB
=> AMNB là HThoi ( vì là HBH có 2 cạnh kề = nhau )
b) AMNB là Hthoi
=> AN là tia Phân giác của ^BNM
^BNM = 120* (là góc TCP vs ^B)
=> ^ANM = ^BNM /2 = 120*/2 = 60*
t/ tự ta có MNCD là Hthoi
=> ND là tia Phân giác của ^MNC
^MNC = 60* (là góc TCP vs ^NCD, mà ^NCDlà góc TCP vs ^B)
=> ^MND = ^MNC/2 = 30*
có ^AND = ^ANM + ^MND = 60* + 30* = 90*
=> AN vuông vs N
tam giác BAN cân tại B ( AB = BN t/c Hthoi )
^B =60* (gt)
=> tg BAN đều
=> AN = BA
AB = CD (t/c HBH )
=> AN = CD
^ANC = ^ANM + ^MNC , ^MNC =60*= ^B (2 góc đồng vị)
=> ^ANC = 60* +60* =120*
xét tg ANC và tg NCD
có NC chung
^ANC = ^NCD (=120*)
AN = CD (cmt)
=> tg ANC = tg NCD (cgc)
=> AC = ND ( 2 cạnh t/ứ)
c) gọi O là giao cuả BM và AN
có AMNB là Hthoi (cm câu a)
=> BM vuông vs AN (t/c Hthoi)
BM cắt AN tại trung điểm mỗi đường
=> O là trung điểm AN
có tam giác BAN đều (cm câu b)
=> AN = AB = a
mà O là trung điểm AN (cmt).
=> AO = ON = AN/2 = a/2
xét tg BON vuông tại O
có \(BO^2+ON^2=BN^2=>BO^2=BN^2-ON^2=a^2-\left(\dfrac{a}{2}\right)^2=\dfrac{3a^2}{4}=>BN=\dfrac{\sqrt{3}a}{2}\)
có O là trung điểm BM (T/C Hthoi )
=> BM = 2BO = 2\(\dfrac{\sqrt{3}a}{2}\)=\(\sqrt{3}a\)
S Hthoi ABMN = \(\dfrac{1}{2}AN.BM=\dfrac{1}{2}a.\sqrt{3}a=\dfrac{a^2\sqrt{3}}{2}\)
xét tứ giác AMDN có BN // MD, BN = MD =a
=> AMDN là HBH
=> BM = ND ( t/c HBH )
=> ND = \(\sqrt{3}a\)
S tam giác AND = \(\dfrac{1}{2}AN.ND=\dfrac{1}{2}a.\sqrt{3}a=\dfrac{a^2\sqrt{3}}{2}\)
a: Xét tứ giác AMNB có
BN//AM
BN=AM
Do đó: AMNB là hình bình hành
mà BN=AB
nên AMNB là hình thoi
a: Xét tứ giác AMNB có
AM//NB
AM=NB
Do đó: AMNB là hình bình hành
mà AM=AB
nên AMNB là hình thoi
b: Xét tứ giác MDCN có
MD//CN
MD=CN
Do đó; MDCN là hình bình hành
mà DM=DC
nên MDCN là hình thoi
=>MD=NM
mà NM=AM
nên NM=AM=MD
=>NM=AD/2
Xét ΔAND có
NM là đường trung tuyến
NM=AD/2
Do đó: ΔAND vuông tại N
a. tam giác ABC có AM=MC và BN=NC => MN là đg TB của ABC => MN//AB => AMNB là hình thang ( k thể là Hình bình hành được )
b. D là điểm đối xứng với B qua M =>BM=MD
Tứ giác ABCD có AM=MC và BM=MD => 2 đg chéo cắt nhau tại trung điểm của mỗi đường
=> ABCD là HBH
c. E đối xứng với A qua N => AN=NE
ABEC có BN=NC và AN=NE => ABEC là HBH ( CMTT như câu b )
Bài 1:
a: Xét tứ giác ECDF có
EC//FD
EC=FD
Do đó: ECDF là hình bình hành
mà FD=DC
nên ECDF là hình thoi
b: Xét tứ giác ABED có EB//AD
nên ABED là hình thang
c: Xét ΔAED có
EF là đường trung tuyến
EF=AD/2
Do đó: ΔAED vuông tại E
Bài 2 :
A B C D M E
a, Xét tam giác ABC ta có :
D là trung điểm AB
M là trung điểm CB
=)) DM là đường TB tam giác ABC
=)) DM // AC hay DM // AE (1)
Ta có : E là trung điểm AC
M là trung điểm BA
=)) EM là đường TB tam giác ABC
=)) EM // AB hay EM // AD (2)
Từ 1;2 =)) Tứ giác ADME là hình bình hành
b, Nếu tam giác ABC cân tại A => AM là đường trung tuyến AM
=)) AM đồng thời là tia phân giác của ^A
Xét hình bình hành ADME có 2 đường chéo AM là tia phân giác của ^A (cmt)
=)) Tứ giác ADME là hình thoi
c, Nếu tam giác ABC vuông tại A => ^A = 90^0
Xét hình bình hành ADME có ^A =90^0
=)) Tứ giác ADME là hình chữ nhật
2/
a/ hình thang ABCD có
AB // EF
==> AB // KF
xét tam giác ABC có
F là trung điểm của BC
AB // KF
==> KF là đường trung bình của tam giác ABC
==> K là trung điểm của AC
==> AK = KC
b/
E là trung điểm AD
F là trung điểm BC
==> EF là đường trung bình của hình thang ABCD
==> EF = (AB + CD) / 2 = (4 + 10) / 2 = 7(cm)
KF là đường trung bình của tam giác ABC nên
KF = AB / 2 = 4 / 2 = 2(cm)
==> EK = EF - KF = 7 - 2 = 5(cm)
vậy EK = 5(cm), KF = 2 (cm)
3/
a/ ta có
D là trung điểm của AB
M là trung điểm của BC
==> DM là đường trung bình của tam giác ABC
==> Dm // AC
==> DM // AE ( E thuộc AC, DM // AC)
chứng minh tương tự ta có
ME là đường trung bình của tam giác ABC
==> AD // ME
tứ giác ADME có DM // AE, AD // ME nên là HBH
b/ ( nếu tam giác ABC cân tại A)
tam giác ABC cân tại A ==> AB = AC
AD = 1/2 AB (D là trung điểm của AB)
AE = 1/2 AC (E là trung điểm của AC)
==> AD = AE
c/ (nếu tam giác ABC vuông)
ta có
tứ giác ADME là HBH
góc A = 90 độ
==> tứ giác ADME là HCN
d/ ta có
AB^2 + AC^2 = BC^2
6^2 + 8^2 = 100
==> BC = 10(cm)
AM là đường trung tuyến của tam giác ABC
==> AM = 1/2 BC = 1/2 . 10 = 5(cm)
vậy AM = 5cm
Bài 2:Cho mk ý kiến,sai đề à???4cm=6cm nhé
Bài 3:
Bài 4:
Nối D với E, nối D với M:
Chứng minh được ED//FB (BEDF là hình thoi) (1)
BF là đường trung bình tam giác AMD
=> MD//FB (tc) (2)
(1),(2) => MD trùng với ED (định lý) ( Qua 1 điểm ko thuộc đường thẳng a có 1 và chỉ 1 đường thẳng đi qua điểm đó và song song với đường thẳng a )
từ đó bạn có thể cm BMCD là hình chữ nhật ( nếu cần )
( xét từ1 giác BDCM có BC cắt DM tại trung điểm của mỗi đoạn ->BMCD là Hình chữ nhật)
Bài 5:
Ai bt giúp mình nhanh với nha