\(\hept{\begin{cases}\left(2m+1\right)x+y=2m-2\\m^2x-y=m^2-3m\end{cases}}\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 11 2018

a/ \(\hept{\begin{cases}mx+y=2m\\x+my=m+1\end{cases}}\)

\(\Rightarrow\left(x+y\right)\left(m+1\right)=3m+1\)

\(\Leftrightarrow\left(x+y\right)=\frac{3m+1}{m+1}=3-\frac{2}{m+1}\)

Vì x, y nguyên nên (m + 1) phải là ước nguyên của 2.

14 tháng 11 2018

b/ \(\hept{\begin{cases}\left(m+1\right)x+my=2m-1\\mx-y=m^2-2\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}\left(m+1\right)x+my=2m-1\left(1\right)\\y=mx-m^2+2\left(2\right)\end{cases}}\)

\(\Rightarrow\left(2\right)\Leftrightarrow\left(m+1\right)x+m\left(mx-m^2+2\right)=2m-1\)

\(\Leftrightarrow\left(m^2+m+1\right)\left(x-m+1\right)=0\)

\(\Rightarrow\hept{\begin{cases}x=m-1\\y=2-m\end{cases}}\)

\(\Rightarrow A=\left(m-1\right)\left(2-m\right)=-m^2+3m-2\le\frac{1}{4}\)

12 tháng 4 2018

a) với m=2 thì \(hpt\Leftrightarrow\hept{\begin{cases}x+y=1\left(1\right)\\2x+y=4\left(2\right)\end{cases}}\Leftrightarrow\hept{\begin{cases}x=3\left(\left(2\right)-\left(1\right)\right)\\x+y=1\end{cases}}\Leftrightarrow\hept{\begin{cases}x=3\\y=-2\end{cases}}\)

b) \(\hept{\begin{cases}x+y=1\left(a=1;b=1;c=1\right)\\mx+y=2m\left(a^,=m;b^,=1;c^,=2m\right)\end{cases}}\)

hãy sử dụng CT và thế a, b, c, a,, b,, c, rồi tìm ra m

  • có vô số nghiệm nếu \(\frac{a}{a^,}=\frac{b}{b^,}=\frac{c}{c^,}\)
  • vô nghiệm nếu \(\frac{a}{a^,}=\frac{b}{b^,}\ne\frac{c}{c^,}\)
  • có 1 nghiệm duy nhất nếu\(\frac{a}{a^,}\ne\frac{b}{b^,}\)
12 tháng 4 2018

Cảm ơn bạn nha!!

17 tháng 2 2021

=( U GAY

13 tháng 2 2018

b) \(\hept{\begin{cases}x+my=m+1\left(1\right)\\mx+y=2m\left(2\right)\end{cases}}\)

từ \(\left(2\right)\) ta có: \(y=2m-mx\)  \(\left(3\right)\)

thay (3) vào (1) ta được  \(x+m\left(2m-mx\right)=m+1\)

\(\Leftrightarrow x+2m^2-m^2x=m+1\)

\(\Leftrightarrow x\left(1-m^2\right)=m+1-2m^2\)

\(\Leftrightarrow x\left(1-m^2\right)=-m^2+1\)

\(\Leftrightarrow x\left(m^2-1\right)=m^2-1\)  \(\left(4\right)\)

để hpt có nghiệm duy nhất, pt (4) pải có nghiệm duy nhất  

\(\Leftrightarrow m^2-1\ne0\Leftrightarrow m^2\ne1\Leftrightarrow m\ne\pm1\)

từ (4) ta có  \(x=\frac{m^2-1}{m^2-1}=1\)

từ (3) ta có: \(y=2m-m\)

\(y=m\)

vậy hpt có nghiệm duy nhất \(\left(x;y\right)=\left(1;m\right)\)

theo bài ra  \(\hept{\begin{cases}x\ge2\\y\ge1\end{cases}}\)

\(\Leftrightarrow m\ge1\)

vậy....

13 tháng 2 2018

a) khi m = 2 hpt có dạng 

\(\hept{\begin{cases}x+2y=3\\2x+y=4\end{cases}}\Leftrightarrow\hept{\begin{cases}x=3-2y\\2\left(3-2y\right)+y=4\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=3-2y\\6-4y+y=4\end{cases}}\Leftrightarrow\hept{\begin{cases}-3y=-2\\x=3-2y\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}y=\frac{2}{3}\\x=\frac{5}{3}\end{cases}}\)

vậy....

Xét hệ: \(\hept{\begin{cases}mx+y=5\\2mx+3y=6\end{cases}}\) <=> \(\hept{\begin{cases}3mx+3y=15\\2mx+3y=6\end{cases}}\) <=> \(\hept{\begin{cases}mx+y=5\\mx=9\left(\cdot\right)\end{cases}}\)

Hệ pt đã cho có nghiệm duy nhất <=> \(\left(\cdot\right)\)có nghiệm duy nhất m \(\ne\)0

Khi đó hệ đã cho có nghiệm duy nhất \(\hept{\begin{cases}x=\frac{9}{m}\\y=-4\end{cases}}\)

Ta có: (2m - 1)x + (m + 1)y = m

Hay (2m - 1).\(\frac{9}{m}\) + -4(m + 1) = m

<=> \(\frac{18m-9}{m}-4m-4-m=0\)

<=> \(\frac{18m-9-4m^2-4m-m^2}{m}=0\)

=> -5m2 + 14m - 9 = 0

<=> 5m2 - 14m + 9 = 0

<=>5m2 - 5m - 9m + 9 = 0

<=> 5m(m - 1) - 9(m - 1) = 0

<=> (5m - 9)(m - 1) = 0 <=> \(\orbr{\begin{cases}m=\frac{9}{5}\\m=1\end{cases}\left(TM\right)}\)

Vậy với m = 9/5 hoặc m = 1 thì thỏa mãn đề bài