Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) khi \(m=3\)thì hpt có dạng
\(\hept{\begin{cases}3x+2y=1\\3x+4y=-1\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}-2y=2\\3x+2y=1\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}y=-1\\3x-2=1\end{cases}}\Leftrightarrow\hept{\begin{cases}y=-1\\3x=3\end{cases}}\Leftrightarrow\hept{\begin{cases}y=-1\\x=1\end{cases}}\)
vậy với \(m=3\) hpt có nghiệm duy nhất \(\left(x;y\right)=\left(1;-1\right)\)
b) (1) => y= \(\frac{1-mx}{2}\)thay vào (2) => 6x+(m+1)(1-mx)=-2
<=> x(6-m-m2)=-3-m
pt có nghiêm duy nhất khi 6-m-m2\(\ne\)0 <=> m\(\ne\)2;-3 (*)
với m\(\ne\)x;-3 thì x=\(\frac{-1}{m-2}\)=> y=\(\frac{1+\frac{m}{m-2}}{2}\)=\(\frac{2m-2}{2m-4}\)=1+\(\frac{1}{m-2}\)
x. y nguyên khi m-2\(\in\)Ư(1)={1;-1}
=> m\(\in\){3;1} (**)
từ (*)(**) => m \(\in\){3;1}
Xét hệ: \(\hept{\begin{cases}mx+y=5\\2mx+3y=6\end{cases}}\) <=> \(\hept{\begin{cases}3mx+3y=15\\2mx+3y=6\end{cases}}\) <=> \(\hept{\begin{cases}mx+y=5\\mx=9\left(\cdot\right)\end{cases}}\)
Hệ pt đã cho có nghiệm duy nhất <=> \(\left(\cdot\right)\)có nghiệm duy nhất m \(\ne\)0
Khi đó hệ đã cho có nghiệm duy nhất \(\hept{\begin{cases}x=\frac{9}{m}\\y=-4\end{cases}}\)
Ta có: (2m - 1)x + (m + 1)y = m
Hay (2m - 1).\(\frac{9}{m}\) + -4(m + 1) = m
<=> \(\frac{18m-9}{m}-4m-4-m=0\)
<=> \(\frac{18m-9-4m^2-4m-m^2}{m}=0\)
=> -5m2 + 14m - 9 = 0
<=> 5m2 - 14m + 9 = 0
<=>5m2 - 5m - 9m + 9 = 0
<=> 5m(m - 1) - 9(m - 1) = 0
<=> (5m - 9)(m - 1) = 0 <=> \(\orbr{\begin{cases}m=\frac{9}{5}\\m=1\end{cases}\left(TM\right)}\)
Vậy với m = 9/5 hoặc m = 1 thì thỏa mãn đề bài
Ta có: \(\hept{\begin{cases}x-my=2\\mx+2y=1\end{cases}}\) <=> \(\hept{\begin{cases}2x-2my=4\\m^2x+2my=m\end{cases}}\)
<=> \(2x+m^2x=4+m\)
<=> \(x\left(m^2+2\right)=4+m\)
<=> \(x=\frac{4+m}{m^2+2}\) => \(y=\frac{1-mx}{2}=\frac{1-m\cdot\frac{4+m}{m^2+2}}{2}=\frac{\frac{m^2+2-4m-m^2}{m^2+2}}{2}\)
=> \(y=\frac{2-4m}{2\left(m^2+2\right)}=\frac{1-2m}{m^2+2}\)
Theo bài ra, ta có: \(3x+2y-1\ge0\)
<=> \(3\cdot\frac{4+m}{m^2+2}+2\cdot\frac{1-2m}{m^2+2}-1\ge0\)
<=> \(\frac{3\left(4+m\right)+2\left(1-2m\right)-m^2-2}{m^2+2}\ge0\)
<=> \(12+3m+2-4m-m^2-2\ge0\) (vì \(m^2+2>0\))
<=> \(-m^2-m+12\ge0\)
<=> \(m^2+4m-3m-12\le0\)
<=> \(\left(m+4\right)\left(m-3\right)\le0\)
<=> \(\hept{\begin{cases}m+4\ge0\\m-3\le0\end{cases}}\) hoặc \(\hept{\begin{cases}m+4\le0\\m-3\ge0\end{cases}}\)
<=> \(\hept{\begin{cases}m\ge-4\\m\le3\end{cases}}\) hoặc \(\hept{\begin{cases}m\le-4\\m\ge3\end{cases}}\)
<=> \(-4\le m\le3\)