K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Gọi O là giao của AC và BD

ABCD là hình bình hành

=>AC cắt BD tại trung điểm của mỗi đường

=>O là trung điểm chung của AC và BD

Xét tứ giác AECG có

AE//CG

AE=CG

Do đó: AECG là hình bình hành

=>AG//CE và AG=CE

Xét tứ giác AHCF có

AH//CF

AH=CF

Do đó: AHCF là hình bình hành

=>AF//CH và AF=CH

Xét ΔANB có

E là trung điểm của AB

EM//AN

Do đó: M là trung điểm của BN

=>BM=MN

Xét ΔDMC có

G là trung điểm của DC

GN//MC

Do đó: N là trung điểm của DM

=>DN=MN=MB=1/3DB

DN=1/3DB

DO=1/2DB

Do đó: \(\dfrac{DN}{DO}=\dfrac{1}{3}:\dfrac{1}{2}=\dfrac{2}{3}\)

Xét ΔADC có

DO là trung tuyến

DN=2/3DO

Do đó: N là trọng tâm

=>A,N,G thẳng hàng và C,N,H thẳng hàng

Xét ΔABC có

BO là trung tuyến

BM=2/3BO

Do đó: M là trọng tâm

=>A,M,F thẳng hàng và C,M,E thẳng hàng

Xét ΔEBM và ΔGDN có

EB=GD

\(\widehat{EBM}=\widehat{GDN}\)

BM=DN

Do đó: ΔEBM=ΔGDN

=>EM=GN

Xét tứ giác EMGN có

EM//GN

EM=GN

Do đó: EMGN là hình bình hành

b: Để EMGN là hình chữ nhật thì EG=NM

=>\(AD=\dfrac{BD}{3}\)

F= \(-\frac{1}{2}x^2\)- 2x -6G=(x-1)(x+2)-5CMR đa thức bậc 2 luôn dương hoặc luôn âmBài 1: Cho HBH ABCD. Lấy các điểm E,F,H,G lần lượt trên AB,BC,BC và DA sao cho AE=CH, BF=DG. CMR các tứ giác AECH, BFDG, AGCF, EFHG là HBH và AC,BD,EH,FG cắt nhau tại trung điểm mỗi đoạn thẳng đó.Bài 2: Cho HBH ABCD. Gọi E,F lần lượt là trung điểm của AB và AD. CF và CE cắt BD lần lượt tại M và N. CM DM = MN = NBBài 3: Cho tam giác ABC,...
Đọc tiếp

F= \(-\frac{1}{2}x^2\)- 2x -6

G=(x-1)(x+2)-5

CMR đa thức bậc 2 luôn dương hoặc luôn âm

Bài 1: Cho HBH ABCD. Lấy các điểm E,F,H,G lần lượt trên AB,BC,BC và DA sao cho AE=CH, BF=DG. CMR các tứ giác AECH, BFDG, AGCF, EFHG là HBH và AC,BD,EH,FG cắt nhau tại trung điểm mỗi đoạn thẳng đó.

Bài 2: Cho HBH ABCD. Gọi E,F lần lượt là trung điểm của AB và AD. CF và CE cắt BD lần lượt tại M và N. CM DM = MN = NB

Bài 3: Cho tam giác ABC, gọi M,N,q lần lượt là trung điểm của MQ,BQ,MC. CM tứ giác IJKN là HBH

Bài 4: Cho tam giác ABC, trung tuyên BD = 4cm. Gọi E và F theo thứ tự là trung điểm của CD và BC. GỌi G là giao điểm của EF và AB. Tính độ dài EG.

Các bạn giải theo chương trình lớp 8 HKI, viết ra giấy r gửi qua FB cho mình, bạn nào nhanh và đúng nhất nhận 100k từ mk qua FB nha. Hạn cuối chiều nay

Link FB: https://www.facebook.com/thaison.nguyenvu.79

1
14 tháng 8 2020

Ta có:

a) \(F=-\frac{1}{2}x^2-2x-6=-\frac{1}{2}\left(x^2+4x+4\right)-4\)

\(=-\frac{1}{2}\left(x+2\right)^2-4\le-4< 0\left(\forall x\right)\)

=> F luôn âm với mọi x

b) \(G=\left(x-1\right)\left(x+2\right)-5=x^2+x-2-5\)

\(=x^2+x-7=\left(x^2+x+\frac{1}{4}\right)-7-\frac{1}{4}=\left(x+\frac{1}{2}\right)^2-\frac{29}{4}\)

Ko thể xác định G luôn âm hay dương

a) Xét tứ giác AMND có 

AM//ND

\(AM=ND\left(\dfrac{1}{2}AB=\dfrac{1}{2}CD\right)\)

Do đó: AMND là hình bình hành

Suy ra: AD=MN

b) Xét tứ giác BCNM có 

BM//CN

\(BM=CN\left(\dfrac{1}{2}AB=\dfrac{1}{2}CD\right)\)

Do đó: BCNM là hình bình hành

Xét tứ giác AMCN có 

AM//CN

\(AM=CN\left(\dfrac{1}{2}AB=\dfrac{1}{2}CD\right)\)

Do đó: AMCN là hình bình hành

Suy ra: AN//CM

hay EN//MF

Xét tứ giác BMDN có

BM//DN

\(BM=DN\left(\dfrac{1}{2}AB=\dfrac{1}{2}DC\right)\)

Do đó: BMDN là hình bình hành

Suy ra: BN//MD

hay NF//ME

Xét tứ giác MENF có 

ME//NF(cmt)

MF//NE(cmt)

Do đó: MENF là hình bình hành

3 tháng 1 2017

bik lm câu a,b r mak ko bik lm câu c 

chỉ câu c với

4 tháng 1 2017

mình chịu

31 tháng 5 2018

A B C N Q D P

31 tháng 5 2018

Giúp mk giải câu c) với >< Mình đang cần gấp!!! 

10 tháng 12 2016

Ta có: AM=MB=AB/2 ( M là trung điểm AB)

          DN=NC=DC/2 (N là trung điểm DC)

      Mà: AB=AC (ABCD LÀ HBH)

=> AM=MB=DN=NC

Xét tứ giác AMCN:

AM=NC (cmt)

AM//NC (AB//CD)

Vậy AMCN là hình bình hành

b. 

Xét tứ giác AMND:

AM=ND (cmt)

AM//ND (AB//CD)

Vậy AMDN là hình bình hành

C. hình như bạn chép sai đề rồi: TK??

10 tháng 12 2016

cô giáo mk in đề cương mà s mà sai cho dk chứ

DD
13 tháng 7 2021

a) Xét tam giác \(ABC\):

\(M,N\)lần lượt là trung điểm của \(AB,AC\)nên \(MN\)là đường trung bình của tam giác \(ABC\)

suy ra \(MN=\frac{1}{2}BC,MN//BC\).

Xét tam giác \(DBC\):

\(P,Q\)lần lượt là trung điểm của \(DC,DB\)nên \(PQ\)là đường trung bình của tam giác \(DBC\)

suy ra \(PQ=\frac{1}{2}BC,PQ//BC\).

Suy ra \(PQ=MN,PQ//MN\)

nên \(MNPQ\)là hình bình hành. 

b) - \(MNPQ\)là hình thoi. 

 \(MNPQ\)là hình thoi suy ra \(MN=NP\).

Tương tự ý a) ta cũng chứng minh được \(NP=\frac{1}{2}AD\)

do đó suy ra \(AD=BC\)nên \(ABCD\)là hình thang cân. 

\(MNPQ\)là hình chữ nhật.

\(MNPQ\)là hình chữ nhật suy ra \(MN\perp PQ\).

Chứng minh tương tự ý a) ta cũng có \(NP//AD\)

suy ra \(BC\perp AD\).

\(MNPQ\)là hình vuông.

\(MNPQ\)là hình vuông khi vừa là hình thoi vừa là hình chữ nhật.