Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Viết lại hàm số: \(y=\frac{1}{3}mx^3-(m-1)x^2+3(m-2)x+\frac{1}{3}\)
Ta có \(y'=mx^2-2(m-1)x+3(m-2)\)
a) Trước tiên, để hàm số đạt cực trị tại $x=0$ thì $x=0$ phải là nghiệm của pt \(y'=0\Leftrightarrow 3(m-2)=0\Leftrightarrow m=2\)
Thử lại: \(y'=2x^2-2x\)
\(y'=0\Leftrightarrow x=0\) hoặc \(x=1\). Lập bảng biến thiên ta thấy đúng là $y$ cực đại tại $x=0$
Vậy $m=2$
b) Tương tự như phần a, để hàm số đạt cực trị tại $x=-1$ thì $x=-1$ phải là nghiệm của pt \(y'=0\)
\(\Leftrightarrow m(-1)^2-2(m-1)(-1)+3(m-2)=0\)
\(\Leftrightarrow m=\frac{4}{3}\)
Thử lại: \(y'=\frac{4}{3}x^2-\frac{2}{3}x-2\). Có \(y'=0\Leftrightarrow x=\frac{3}{2}\) hoặc $x=-1$. Lập bảng biến thiên ta thấy $y$ cực tiểu tại $x=\frac{3}{2}$ chứ không phải tại $x=-1$
Vậy không tồn tại $m$ thỏa mãn.
c) Hàm số có cực đại và cực tiểu khi $y'=0$ có hai nghiệm phân biệt.
Hay $mx^2-2(m-1)x+3(m-2)=0$ có hai nghiệm phân biệt
Do đó \(\left\{\begin{matrix} m\neq 0\\ \Delta'=(m-1)^2-3m(m-2)>0\end{matrix}\right.\)
\(\Leftrightarrow \left\{\begin{matrix} m\neq 0\\ -2m^2+4m+1>0\Leftrightarrow \frac{2-\sqrt{6}}{2}< m< \frac{2+\sqrt{6}}{2}\end{matrix}\right.\)
d) Điểm cực trị của hàm số chính là nghiệm của $y'=0$
Với ĐKXĐ như phần c, áp dụng hệ thức Viete:
\(\left\{\begin{matrix} x_1+x_2=\frac{2(m-1)}{m}\\ x_1x_2=\frac{3(m-2)}{m}\end{matrix}\right.\)
Nếu \(x_1+2x_2=1\Rightarrow x_2=1-(x_1+x_2)=\frac{2-m}{m}\)
Mà \(x_1x_2=\frac{3(m-2)}{m}\Rightarrow x_1=-3\)
Khi đó: \(1=x_1+2x_2=-3+\frac{2-m}{m}=-4+\frac{2}{m}\Rightarrow m=\frac{2}{5}\)
Thử lại thấy thỏa mãn đkxđ. Vậy $m=\frac{2}{5}$
y'=3x2-2(m+2)x+1-m.
\(\Delta\)'=(m+2)2-3(1-m)=m2+7m+1>0 (để hàm số có hai điểm cực trị x1, x2).
|x1-x2|=2 \(\Leftrightarrow\) (x1+x2)2-4x1x2=4 \(\Leftrightarrow\) \(\left[\dfrac{2\left(m+2\right)}{3}\right]^2-4\dfrac{1-m}{3}=4\) \(\Rightarrow\) m=-8 (nhận) hoặc m=1 (nhận).
Lời giải:
1.
Để ĐTHS có cực đại và cực tiểu thì \(y'=3x^2+2x+m+2=0\) có hai nghiệm phân biệt
\(\Leftrightarrow \Delta'=1-3(m+2)>0\Leftrightarrow m<\frac{-5}{3}\)
2.
ĐTHS có hai cực trị nằm về hai phía trục tung nghĩa là PT \(y'=3x^2+2x+m+2=0\) có hai nghiệm $x_1,x_2$ trái dấu.
Theo định lý Viete thì \(x_1x_2=\frac{m+2}{3}<0\Leftrightarrow m<-2\)
3. Áp dụng định lý Viete:
Cực trị với hoành độ âm thì: \(\left\{\begin{matrix} x_1+x_2=\frac{-2}{3}<0\\ x_1x_2=\frac{m+2}{3}>0\end{matrix}\right.\Leftrightarrow m>-2\Rightarrow -2< m<\frac{-5}{3}\)
4. Để ĐTHS có cực tiểu tại $x=2$ thì PT \(y'=3x^2+2x+m+2=0\) nhận $x=2$ là nghiệm \(\Leftrightarrow m=-18\)
Thử lại bằng bảng biến thiên ta thấy đúng.
Bài 1:
\(y=x^4+2(m-4)x^2+m+5\)
\(\Rightarrow y'=4x^3+4(m-4)x\)
\(y'=0\Leftrightarrow x(x^2+m-4)=0\Leftrightarrow \left[\begin{matrix} x=0\\ x^2=4-m\end{matrix}\right.\)
Để đths có 3 điểm cực trị thì \(y'=0\) phải có ít nhất 3 nghiệm pb. Khi đó \(4-m>0\Rightarrow m< 4\)
Khi đó, các điểm cực trị là:
\((0; m+5)\)
\((\sqrt{4-m}, -m^2+9m-11)\)
\((-\sqrt{4-m}, -m^2+9m-11)\)
Nếu $O$ là trọng tâm:
\(\left\{\begin{matrix} \frac{0+\sqrt{4-m}-\sqrt{4-m}}{3}=x_O=0\\ \frac{m+5+2(-m^2+9m-11)}{3}=y_O=0\end{matrix}\right.\)
\(\Leftrightarrow -2m^2+19m-17=0\Rightarrow \left[\begin{matrix} m=\frac{17}{2}\\ m=1\end{matrix}\right.\)
Vì $m< 4$ nên $m=1$
Bài 2:
\(y'=4x^3-4mx=0\Leftrightarrow \left[\begin{matrix}
x=0\\
x^2=m\end{matrix}\right.\)
Để hàm bậc 4 có 3 cực trị thì $y'=0$ phải có 3 nghiệm pb, suy ra $m>0$
Khi đó: \(y'=0\Leftrightarrow \left[\begin{matrix} x=0\\ x=\sqrt{m}\\ x=-\sqrt{m}\end{matrix}\right.\)
Ba điểm cực trị:
\(A(0; m-1)\)
\(B(\sqrt{m}; -m^2+m-1)\)
\(C(-\sqrt{m}; -m^2+m-1)\)
Suy ra:
\(\overrightarrow{BC}=(-2\sqrt{m};0)\); \(\overrightarrow{AB}=(\sqrt{m}; -m^2)\)
\(\overrightarrow{OA}=(0;m-1)\); \(\overrightarrow{OC}=(-\sqrt{m}; -m^2+m-1)\)
Vì $O$ là trực tâm nên : \(\left\{\begin{matrix} \overrightarrow{BC}.\overrightarrow{OA}=0\\ \overrightarrow{AB}.\overrightarrow{OC}=0\end{matrix}\right.\)
\(\Rightarrow \left\{\begin{matrix} -2\sqrt{m}.0+0.(m-1)=0\\ -m+m^2(m^2-m+1)=0\end{matrix}\right.\)
\(\Rightarrow m(m^3-m^2+m-1)=0\)
\(\Leftrightarrow m(m^2+1)(m-1)=0\Rightarrow m=1\) vì \(m>0\)
Vậy.......
2.
\(y'=3x^2-6mx+6m\)
Hàm số y có 2 điểm cực trị \(\Leftrightarrow\Delta'>0\)
\(\Leftrightarrow\left(-3m\right)^2-18m>0\)
\(\Leftrightarrow\left[{}\begin{matrix}m< 0\\m>2\end{matrix}\right.\)
1.
Nhắc nhở một tý: Phương trình bậc 3 thì chỉ có thể có 2 cực trị hoặc là không có cực trị nào hết, không phương trình bậc 3 nào có 1 cực trị hết.
\(y'=x^3-6mx+4m^3\)
Hàm số có cực trị \(\Leftrightarrow y'=0\) có 2 nghiệm phân biệt \(\Leftrightarrow\Delta'>0\)
\(\Leftrightarrow\left(-3m\right)^2-4m^3>0\)
\(\Leftrightarrow\left\{{}\begin{matrix}m\ne0\\m< \frac{9}{4}\end{matrix}\right.\)
Để hàm số có 3 điểm cực trị
\(\Leftrightarrow1.2\left(m^2-m-6\right)< 0\)
\(\Rightarrow m^2-m-6< 0\)
\(\Rightarrow-2< m< 3\)
\(\Rightarrow m=\left\{-1;0;1;2\right\}\)
Chọn B