Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Phương trình hoành độ giao điểm: \(x^2=2x-3m\Leftrightarrow x^2-2x+3m=0\) (1)
(P) cắt (d) tại 2 điểm khi (1) có 2 nghiệm \(\Rightarrow\Delta'=1-3m\ge0\Rightarrow m\le\dfrac{1}{3}\)
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=2\\x_1x_2=3m\end{matrix}\right.\)
\(x_1.x_2^2-x_2\left(3m+2x_1\right)=12\)
\(\Leftrightarrow x_1x_2.x_2-3mx_2-2x_1x_2=12\)
\(\Leftrightarrow3mx_2-3mx_2-6m=12\)
\(\Rightarrow m=-2\)
Phương trình hoành độ giao điểm của (d) và (P):
=> x^2 = (2m+2)x-m^2-2m
<=>x^2 -(2m+2)x+m^2+2m=0
(a=1;b=-(2m+2);c=m^2+2m)
Để 2 (d) cắt (P) tại 2 điểm phân biệt => \(\Delta\) >0
<=> (2m+2)^2-4(m^2+2m)>0
<=> 4m^2+8m+4-4m^2-8m>0
<=> 4>0 (luôn đúng)
Theo hệ thức Vi ét ta có: \(\hept{\begin{cases}x1+x2=2m+2\\x1.x2=m^2+2m\end{cases}}\)
x1+x2=5 <=> 2m+2=5 <=> 2m=3 <=> m=3/2.
(Mình cứ thấy nó sai sai và thiếu thiếu sao ý, cái đề ý)
Xét phương trình hoành độ giao điểm của (P) và (d) :
\(x^2+2x+m=0\)\(\Delta'=4-m\)
Vì (P) và (d) cắt nhau tại hai điểm phân biệt nên \(\Delta'>0\Rightarrow m< 4\)
Theo hệ thức Vi-et, ta có : \(\hept{\begin{cases}x_A+x_B=-2\\x_A.x_B=m\end{cases}}\)
\(\frac{1}{x_A^2}+\frac{1}{x_B^2}=6\Leftrightarrow\)\(\frac{x^2_A+x^2_B}{x_A^2.x_B^2}=6\Leftrightarrow\frac{\left(x_A+x_B\right)^2-2x_A.x_B}{x_A^2.x^2_B}=6\Rightarrow\frac{4-2m}{m^2}=6\Leftrightarrow6m^2+2m-4=0\Rightarrow m=-1\)hoặc \(m=\frac{2}{3}\)
Xét phương trình hoành độ giao điểm ta có :
\(2x^2=2mx+1\Leftrightarrow2x^2-2mx-1=0\text{ }\left(\text{*}\right)\)
Dễ thấy có ac = 2.(-1 ) = -2 < 0 nên (*) luôn có hai nghiệm phân biệt
mà rõ ràng x1 x2 trái dấu nên ta biết rằng : \(\left|x_2\right|-\left|x_1\right|=x_2+x_1=2m=2021\Leftrightarrow m=\frac{2021}{2}\)( do x2 dương, x1 âm)
a
b) Xét phương trình hoành độ giao điểm của (P) và (d'):
\(x^2=x-2m+1\)
\(\Leftrightarrow x^2-x+2m-1=0\)
\(\Delta=\left(-1\right)^2-4.1.\left(2m-1\right)=5-8m\)
Để (d') cắt (P) tại 2 điểm phân biệt: \(\Delta>0\Leftrightarrow5>8m\Leftrightarrow m< \dfrac{5}{8}\)
Theo định lí Vi-et:
\(\left\{{}\begin{matrix}x_1+x_2=1\\x_1.x_2=2m-1\end{matrix}\right.\)
Theo bài: \(x_1^2+x_2^2=7\)
\(\Leftrightarrow x_1^2+2x_1x_2+x_2^2-2x_1x_2=7\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=7\)
\(\Leftrightarrow1^2-2\left(2m-1\right)=7\)
\(\Leftrightarrow1-4m+2=7\)
\(\Leftrightarrow-4m=4\Leftrightarrow m=-1\left(tmm< \dfrac{5}{8}\right)\)
Vậy m = -1 là giá trị cần tìm
a)
b) Đường thẳng (d') cắt (P) ta có phương trình hoành độ giao điểm là:
\(x^2=x-2m+1\)
\(\Leftrightarrow x^2-x+2m-1=0\)
\(\Delta=\left(-1\right)^2-4\cdot1\cdot\left(2m-1\right)=1-8m+4=-8m+5\)
\(\Leftrightarrow\left[{}\begin{matrix}x_1=\dfrac{1+\sqrt{5-8m}}{2}\\x_2=\dfrac{1-\sqrt{5-8m}}{2}\end{matrix}\right.\left(đk:m\le\dfrac{5}{8}\right)\)
Mà: \(x^2_1+x^2_2=7\)
\(\Leftrightarrow\left(\dfrac{1+\sqrt{5-8m}}{2}\right)^2+\left(\dfrac{1-\sqrt{5-8m}}{2}\right)^2=7\)
\(\Leftrightarrow\dfrac{1+2\sqrt{5-8m}+5-8m}{4}+\dfrac{1-2\sqrt{5-8m}+5-8m}{4}=7\)
\(\Leftrightarrow\dfrac{6+2\sqrt{5-8m}-8m+6-2\sqrt{5-8m}-8m}{4}=7\)
\(\Leftrightarrow12-16m=28\)
\(\Leftrightarrow-16m=16\)
\(\Leftrightarrow m=-1\left(tm\right)\)
Vậy: ....