K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
29 tháng 5 2017
A D E C I B J H K M O
- vÌ H là trực tâm của tam giác ABC , \(BD⊥BC,CE⊥AB\Rightarrow\widehat{BEC}=\widehat{BDC}=90^0\) nên BCDE nội tiếp đường tròn đường kính BC. Tâm đường tròn nội tiếp BCDE là J ( trung điểm BC)
- I đối xứng với A qua O => AI là đường kính của đường tròn tâm O =>\(\widehat{ACI}=\widehat{ABI}=90^0\)vì\(\hept{\begin{cases}BD⊥AC\\CI⊥AC\end{cases}\Rightarrow BD}\downarrow\uparrow CI\left(1\right)\) VÀ\(\hept{\begin{cases}CE⊥AB\\BI⊥AB\end{cases}\Rightarrow CE\uparrow\downarrow BI\left(2\right)}\)Từ (1) và (2) BHCI là hình bình hành,mà J LÀ Trung điểm của BC nên J là giao điểm của hai đường chéo HI và BC của hbh BICH nên ta có I,J,H thẳng hàng (DPCM)
- Vì BCDE là tứ giác nội tiếp nên \(\widehat{ABC}=\widehat{ADK}\left(3\right)\)mặt khác ABIC nội tiếp (O) nên \(\widehat{IAC}=\widehat{IBC}\left(4\right)\)ta lại có \(BI⊥AB\Rightarrow\widehat{ABC}+\widehat{IBC}=90^O\left(5\right)\)TỪ 3,4,5 ta có \(\widehat{IAC}+\widehat{ADK}=90^O\)hay \(DE⊥AM\Rightarrow\Delta ADM\)vuông tại D và có DE là đường cao tương ứng tại D nên theo hệ thức lượng trong tam giác vuông có (DPCM) \(\frac{1}{DK^2}=\frac{1}{DA^2}+\frac{1}{DM^2}\)
9 tháng 9 2017
A B C D M N E
tu D kẻ DE vuong góc với AB (E thuộc AB)
áp dụng hệ thức lượng vào tam giác vuông EMD
\(\frac{1}{AD^2}=\frac{1}{ED^2}+\frac{1}{DM^2}\)(1)
ma tam giac \(\Delta EAD=\Delta NCD\left(cgv-gnk\right)\)
\(\Rightarrow ED=ND\)
thay vào (1) ta có \(\frac{1}{AD^2}=\frac{1}{DM^2}+\frac{1}{DN^2}\)
HAY \(\frac{1}{a^2}=\frac{1}{DM^2}+\frac{1}{DN^2}\)
NT
16 tháng 10 2015
Từ D kẻ đt vuông góc với DM và cắt BC tại F. Cm tam giác DCF=DAM -->DF=DM.Áp dụng ht \(\frac{1}{h^2}=\frac{1}{b^2}+\frac{1}{c^2}\)vào tgDFN là được nhé!!
(Đề kiểu này quá nặng, đầy kĩ thuật...!!!)
Bước 1: Ta sẽ CM \(K\) có toạ độ \(\left(\frac{-m^2+2m+1}{m^2+1};\frac{-m^2+2m-3}{m^2+1}\right)\) (bước này bạn tự làm nha).
Bước 2: Ta sẽ tìm max của hàm số \(g=\frac{-m^2+2m+1}{m^2+1}\).
Nhân chéo lên: \(-m^2+2m+1=gm^2+g\) hay \(\left(g+1\right)m^2-2m+\left(g-1\right)=0\).
Coi đây là phương trình bậc 2 theo \(m\), giải như bình thường.
\(\Delta'=\left(-1\right)^2-\left(g+1\right)\left(g-1\right)=2-g^2\).
Để \(m\) tồn tại thì pt phải có nghiệm, tức là \(\Delta'=2-g^2\ge0\) (tới đây dừng được rồi).
------
Bước 3: Xét hàm số \(f\left(x\right)=\sqrt{2-x^2}-2\) (với ĐKXĐ \(2-x^2\ge0\)).
Do đó \(g=\frac{-m^2+2m+1}{m^2+1}\) thoả ĐKXĐ này (ở bước 2 mới CM).
Ta tính \(f\left(\frac{-m^2+2m+1}{m^2+1}\right)=\frac{-m^2+2m-3}{m^2+1}\) (biến đổi khá dài nhưng nói chung là làm được).
Tức là \(f\left(x\right)=y\) với \(x,y\) là hoành độ và tung độ của \(K\).
Vậy \(K\) di động trên đồ thị của hàm số \(y=\sqrt{2-x^2}-2\) (mình xin không giải thích tại sao lại nghĩ ra hàm số này).