Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
â) thay x= 1 và y=4 vào hàm số y= (m-2)x+3 ta duoc
4=(m-2)*1+3
m= -1
fibgjuiocfkogiojfjiojhfyhcfd+885+6856354756510266+58714ffggx
Để hàm số y=(m-5)x là hàm số bậc nhất thì \(m-5\ne0\)
hay \(m\ne5\)
1) Để hàm số y=(m-5)x đồng biến trên R thì m-5>0
hay m>5
Để hàm số y=(m-5)x nghịch biến trên R thì m-5<0
hay m<5
2) Để đồ thị hàm số y=(m-5)x đi qua A(1;2) thì
Thay x=1 và y=2 vào hàm số y=(m-5)x, ta được:
m-5=2
hay m=7(nhận)
Vậy: Để đồ thị hàm số y=(m-5)x đi qua A(1;2) thì m=7
a, Hàm số y = 2x + m - 1 đi qua điểm A(2;2) nên suy ra x = 2; y =2
Thay vào hàm số, ta có: 2 = 2.2 + m - 1 <=> 2 = 3 + m <=> m= -1
=> hàm số: y = 2x - 2
đồ thị: xác định 2 điểm ( 0 ; -2 ) và ( 1; 0). vẽ đường thẳng đi qua 2 điểm này được đồ thị hàm số cần vẽ.
b, Vì đồ thị của hàm số y = 2x + m-1 cắt đồ thị hàm số y = x+1 tại một điểm nằm trên trục hoành nên m-1 = 1 <=> m = 2
a, Hàm số y = 2x + m - 1 đi qua điểm A(2;2) nên suy ra x = 2; y =2
Thay vào hàm số, ta có: 2 = 2.2 + m - 1 <=> 2 = 3 + m <=> m= -1
=> hàm số: y = 2x - 2
đồ thị: xác định 2 điểm ( 0 ; -2 ) và ( 1; 0). vẽ đường thẳng đi qua 2 điểm này được đồ thị hàm số cần vẽ.
b, Vì đồ thị của hàm số y = 2x + m-1 cắt đồ thị hàm số y = x+1 tại một điểm nằm trên trục hoành nên m-1 = 1 <=> m = 2
chúc bn hok tốt @_@
Lời giải
a) Hàm số bậc nhất đồng biến khi (a>0) => m-3 >0 => m>3
b) A(1;2) => y(1) =2 => (m-3).1=2 => m=5
c) B(1;-2) => y(1) =-2=> (m-3).1=-2 => m=1
d)
a) Hàm số \(y=\left(m-3\right)x\) đồng biến khi \(m-3>0\Leftrightarrow m>3\)
Hàm số \(y=\left(m-3\right)x\) nghịch biến khi \(m-3< 0\Leftrightarrow m< 3\)
a/ Hai hàm số có đồ thị // với nhau khi
\(\hept{\begin{cases}m-2=1\\3\ne0\end{cases}}\Leftrightarrow m=3\)
b/ Tọa độ giao điểm 2 đường thẳng là nghiệm của hệ
\(\hept{\begin{cases}y=x+3\\y=2x+1\end{cases}}\Leftrightarrow\hept{\begin{cases}x=2\\y=5\end{cases}}\)
c/ Gọi điểm mà đường thẳng luôn đi qua là M(a,b) ta thế vào hàm số được
\(b=ma+3\)
\(\Leftrightarrow ma+3-b=0\)
Để phương trình này không phụ thuôc m thì
\(\hept{\begin{cases}a=0\\3-b=0\end{cases}}\Leftrightarrow\hept{\begin{cases}a=0\\b=3\end{cases}}\)
Tọa độ điểm cần tìm là M(0, 3)
d/ Ta có khoản cách từ O(0,0) tới (d) là 1
\(\Rightarrow=\frac{\left|0-0m-3\right|}{\sqrt{1^2+m^2}}=\frac{3}{\sqrt{1+m^2}}=1\)
\(\Leftrightarrow\sqrt{1+m^2}=3\)
\(\Leftrightarrow m^2=8\)
\(\Leftrightarrow\orbr{\begin{cases}m=2\sqrt{2}\\m=-2\sqrt{2}\end{cases}}\)
a) Hàm số đồng biến khi m - 2 > 0
<=> m > 2
Hàm số nghịch biến khi m - 2 < 0
<=> m < 2
b) Vì A(1;-2) thuộc đồ thị
=> -2 = 1 ( m - 2 ) + 3
<=> -2 = m - 2 + 3
<=> m = 1
Vậy m = 1
Hàm số \(y=\left(m-2\right)x\) đi qua điểm \(A\left(1;3\right)\)
\(\Rightarrow3=\left(m-2\right).1\)
\(\Rightarrow m-2=3\)
\(\Rightarrow m=5\)