K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 7 2018

Hình như đề sai nha bạn phải là 5a+b=-2c mới đúng

\(5a+b=-2c\Rightarrow5a+b+2c=0\)

\(f\left(x\right)=ax^2+bc+c\)

\(\Rightarrow f\left(-1\right)=a.\left(-1\right)+b.\left(-1\right)+c=a-b+c\)

\(\Rightarrow f\left(2\right)=a.2^2+b.2+c=4a+2b+c\)

\(\Rightarrow f\left(-1\right)+f\left(2\right)=a-b+c+4a+2b+c=5a+b+2c=0\)

\(\Rightarrow f\left(-1\right)+f\left(2\right)=0\Rightarrow f\left(-1\right)=-f\left(2\right)\)

Xét \(f\left(-1\right).f\left(2\right)=[-f\left(2\right)].f\left(2\right)=-[f\left(2\right)]^2\le0\)

Vậy \(f\left(-1\right).f\left(2\right)\le0\)

26 tháng 3 2017

Tk mình đi mọi người mình bị âm nè!

Ai tk mình mình tk lại cho

20 tháng 8 2019

Mí bạn giúp mik vs chiều nay mình học rồi :(((

7 tháng 2 2020

Bài 1:

\(a)f\left(x\right)=10x\)

\(\Leftrightarrow f\left(0\right)=10.0=0\)

\(\Leftrightarrow f\left(-1\right)=10\left(-1\right)=-10\)

\(\Leftrightarrow f\left(\frac{1}{2}\right)=\frac{10}{2}=5\)

\(b)\)Vì \(f\left(x\right)=10x\)

Nên: \(f\left(a+b\right)=10\left(a+b\right)\)

Và: \(f\left(a\right)+f\left(b\right)=10a+10b=10\left(a+b\right)\)

Do đó:

\(f\left(a+b\right)=f\left(a\right)+f\left(b\right)\left(đpcm\right)\)

\(c)\)Vì \(\hept{\begin{cases}f\left(x\right)=10x\\f\left(x\right)=x^2\end{cases}\Leftrightarrow x^2=10x}\)

\(\Leftrightarrow x^2-10x=0\)

\(\Leftrightarrow x\left(x-10\right)=0\)

\(\Leftrightarrow\hept{\begin{cases}x=0\\x-10=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=0\\x=10\end{cases}}}\)

Vậy với \(\hept{\begin{cases}x=0\\x=10\end{cases}}\)thì \(f\left(x\right)=x^2\)

19 tháng 3 2018

) f(0) = c; f(0) nguyên => c nguyên     (*)
f(1) = a+ b + c ; f(1) nguyên => a+ b + c nguyên     (**)
f(2) = 4a + 2b + c ; f(2) nguyên => 4a + 2b + c nguyên    (***)
Từ (*)(**)(***) => a + b và 4a + 2b nguyên
4a + 2b = 2a + 2.(a + b) có giá trị  nguyên  mà 2(a+ b) nguyên do a+ b nguyên
nên 2a nguyên => 4a có giá trị nguyên mà 4a + 2b nguyên do đó 2b có giá trị nguyên

:3

25 tháng 3 2018

Có \(f\left(0\right);f\left(1\right);f\left(2\right)\)\(\in Z\Rightarrow\hept{\begin{cases}f\left(0\right)=c\in Z\\f\left(1\right)=a+b+c\in z\\f\left(2\right)=4a+2b+c\in z\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}a+b\in z\\4a+2b\in z\end{cases}\Rightarrow\hept{\begin{cases}2a+2b\in z\\4a+2b\in z\end{cases}}\Rightarrow2a\in z;}2b\in z\)

\(\RightarrowĐPCM\)