K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 3 2017

\(\left\{\begin{matrix}f\left(x\right)=x^5+7x^4-9x^3-2x^2-\dfrac{1}{4}x\left(1\right)\\g\left(x\right)=-x^5+5x^4-2x^3+4x^2-\dfrac{1}{4}\left(2\right)\end{matrix}\right.\)

Sắp xếp số mũ của (ẩn theo một trình tự, Thường, nên giảm dần"

Tính f(x)+g(x) lấy (1) cộng (2)

\(f\left(x\right)+g\left(x\right)=\left(1-1\right)x^5+\left(7+5\right)x^4+\left(-9-2\right)x^3+\left(-2+4\right)x^2+\left(-\dfrac{1}{4}\right)x+\left(-\dfrac{1}{4}\right)\)

\(f\left(x\right)+g\left(x\right)=12x^4-11x^3+2x^2-\dfrac{1}{4}x-\dfrac{1}{4}\)

Tính f(x)-g(x) lấy (1) trừ (2)

\(f\left(x\right)-g\left(x\right)=2x^5+2x^4-7x^3-6x^2-\dfrac{1}{4}x+\dfrac{1}{4}\)

Đề thiếu rồi bạn

9 tháng 4 2016

1/a, f(x) - g(x) + h(x) = x3 - 2x2 + 3x +1 - x3 - x + 1 +2x2 - 1

=(x3 - x3) + (-2x2 + 2x2) + (3x - x) + (1 + 1 - 1)

=2x + 1

b, f(x) - g(x) + h(x) = 0

<=> 2x + 1 = 0

<=> 2x = -1

<=> x = -1/2

Vậy x = -1/2 là nghiệm của đa thức f(x) - g(x) + h(x)

2/ a, 5x + 3(3x + 7)-35 = 0

<=> 5x + 9x + 21 - 35 = 0

<=> 14x - 14 = 0

<=> 14(x - 1) = 0

<=> x-1 = 0 

<=> x = 1

Vậy 1 là nghiệm của đa thức 5x + 3(3x + 7) -35

b, x2 + 8x - (x2 + 7x +8) -9 =0

<=> x2 + 8x - x2 - 7x - 8 - 9 =0

<=> (x2 - x2) + (8x - 7x) + (-8 -9)

<=> x - 17 = 0

<=> x =17

Vậy 17 là nghiệm của đa thức x2 + 8x -(x2 + 7x +8) -9

3/ f(x) = g (x) <=> x3 +4x2 - 3x + 2 = x2(x + 4) + x -5

<=> x3 +4x2 - 3x + 2 = x3 + 4x2 + x - 5 

<=> -3x + 2 = x - 5

<=> -3x = x - 5 - 2 

<=> -3x = x - 7

<=>2x = 7

<=> x = 7/2 

Vậy f(x) = g(x) <=> x = 7/2

4/ có k(-2) = m(-2)2 - 2(-2) +4 = 0

=>  4m + 4 + 4 = 0

=> 4m + 8 = 0

=> 4m = -8

=> m = -2

7 tháng 4 2017

mk ngại làm lắm

16 tháng 4 2016

ta co : F{x} - G{x} +H{x} = 2x^2 - 1

ma F{x} -G{X} +H{x} = 5

2x^2 - 1 = 5

2x^2 =5+1

2X^2= 6

x^2= 6: 2

x^2= 3

[x=\(-\sqrt{3}\)

[x= \(\sqrt{3}\)

vay x=\(\sqrt{3}\)

x=\(-\sqrt{3}\)

10 tháng 5 2017

mọi người cố gắng giúp mình, mình cần gấp đáp án huhu

6 tháng 6 2018

Giải:

a) \(F\left(x\right)+G\left(x\right)-H\left(x\right)\)

\(=4x^2+3x-2+3x^2-2x+5-\left[x\left(5x-2\right)+3\right]\)

\(=4x^2+3x-2+3x^2-2x+5-\left(5x^2-2x+3\right)\)

\(=4x^2+3x-2+3x^2-2x+5-5x^2+2x-3\)

\(=2x^2+3x\)

Để \(F\left(x\right)+G\left(x\right)-H\left(x\right)=0\)

\(\Leftrightarrow2x^2+3x=0\)

\(\Leftrightarrow x\left(2x+3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\2x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-\dfrac{3}{2}\end{matrix}\right.\)

b) \(F\left(x\right)-3x+5\)

\(=4x^2+3x-2-3x+5\)

\(=4x^2+3\)

\(x^2\ge0;\forall x\)

\(\Leftrightarrow4x^2\ge0;\forall x\)

\(\Leftrightarrow4x^2+3\ge3>0;\forall x\)

Vậy ...