K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
7 tháng 11 2021

Dạng: \(....f'\left(x\right)+...f\left(x\right)=...\)

Ý tưởng luôn là đưa về đạo hàm của tổng sau đó lấy nguyên hàm 2 vế.

Thêm bớt sao cho vế trái biến thành: \(u\left(x\right).f'\left(x\right)+u'\left(x\right).f\left(x\right)\) là được

So sánh nó với vế trái đề bài, dư ra \(u'\left(x\right)\) ở trước \(f\left(x\right)\) nên ta chia nó (vế kia vẫn ko quan tâm)

Được: \(\dfrac{u\left(x\right)}{u'\left(x\right)}.f'\left(x\right)+f\left(x\right)\)

So sánh nó với đề bài, vậy ta cần tìm hàm \(u\left(x\right)\) sao cho:

\(\dfrac{u\left(x\right)}{u'\left(x\right)}=x\left(x+1\right)\)

Nhưng để thế này ko lấy nguyên hàm được, phải nghịch đảo 2 vế:

\(\dfrac{u'\left(x\right)}{u\left(x\right)}=\dfrac{1}{x\left(x+1\right)}\)

Giờ thì lấy nguyên hàm: \(\int\dfrac{u'\left(x\right)}{u\left(x\right)}dx=\int\dfrac{dx}{x\left(x+1\right)}\Leftrightarrow ln\left|u\left(x\right)\right|=ln\left|\dfrac{x}{x+1}\right|+C\)

Tới đây suy được \(u\left(x\right)=\dfrac{x}{x+1}\) \(\Rightarrow\) vế trái cần có dạng: 

\(\dfrac{x}{x+1}f'\left(x\right)+\dfrac{1}{\left(x+1\right)^2}f\left(x\right)\)

Nhìn vào đây là xong rồi. Bài toán sẽ được giải như sau:

Chia 2 vế giả thiết cho \(\left(x+1\right)^2\):

\(\Rightarrow\dfrac{x}{x+1}f'\left(x\right)+\dfrac{1}{\left(x+1\right)^2}f\left(x\right)=\dfrac{x}{x+1}\)

\(\Leftrightarrow\left(\dfrac{x}{x+1}+f\left(x\right)\right)'=\dfrac{x}{x+1}\)

Lấy nguyên hàm 2 vế:

\(\Rightarrow\dfrac{x}{x+1}+f\left(x\right)=\int\dfrac{x}{x+1}dx=\int\left(1-\dfrac{1}{x+1}\right)dx=x-ln\left|x+1\right|+C\)

\(\Rightarrow f\left(x\right)=x-\dfrac{x}{x+1}-ln\left|x+1\right|+C=\dfrac{x^2}{x+1}-ln\left|x+1\right|+C\)

Thay \(x=1\)

\(\Rightarrow f\left(1\right)=\dfrac{1}{2}-ln2+C\Rightarrow-2ln2=\dfrac{1}{2}-ln2+C\)

\(\Rightarrow C=-ln2-\dfrac{1}{2}\)

\(\Rightarrow f\left(x\right)=\dfrac{x^2}{x+1}-ln\left|x+1\right|-ln2-\dfrac{1}{2}\)

\(\Rightarrow f\left(2\right)=...\)

15 tháng 4 2022

undefined

15 tháng 4 2022

mình cảm ơn ạ♥♥♥

22 tháng 2 2021

em gửi bài

Chọn B

30 tháng 3 2022

Cho hàm số y=f(x)y=f(x) có đạo hàm và liên tục trên [0;π2][0;π2]thoả mãn f(x)=f′(x)−2cosxf(x)=f′(x)−2cosx. Biết f(π2)=1f(π2)=1, tính giá trị f(π3)f(π3)

A. √3+1/2         B. √3−1/2          C. 1−√3/2             D. 0

NV
12 tháng 11 2021

Khi gặp dạng này, ý tưởng là sẽ tìm 1 hàm u(x) sao cho:

\(\int\limits^b_a\left[f'\left(x\right)-u\left(x\right)\right]^2dx=0\) (1)

\(\Rightarrow f'\left(x\right)-u\left(x\right)=0\Rightarrow f'\left(x\right)=u\left(x\right)\)

Khai triển (1), đề cho sẵn \(\left[f'\left(x\right)\right]^2\)  nên đại lượng \(2u\left(x\right).f'\left(x\right)\) và hàm \(u\left(x\right)\) sẽ được suy ra từ việc tích phân từng phần \(\int\limits f\left(x\right)dx\). Cụ thể:

Xét \(I=\dfrac{2}{3}=\int\limits^2_0f\left(x\right)dx\)  

Đặt \(\left\{{}\begin{matrix}u=f\left(x\right)\\dv=dx\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}du=f'\left(x\right)dx\\v=x\end{matrix}\right.\)

\(\Rightarrow I=x.f\left(x\right)|^2_0-\int\limits^2_0xf'\left(x\right)dx=2-\int\limits^2_0xf'\left(x\right)dx\)

\(\Rightarrow\int\limits^2_0xf'\left(x\right)dx=2-\dfrac{2}{3}=\dfrac{4}{3}\) (2)

(Vậy đến đây hàm \(u\left(x\right)\) được xác định là dạng \(u\left(x\right)=k.x\)

Để tìm cụ thể giá trị k:

Từ (1) ta suy luận tiếp:

\(\int\limits^2_0\left[f'\left(x\right)-kx\right]^2dx=0\Leftrightarrow\int\limits^2_0\left[f'\left(x\right)\right]^2-2k\int\limits^2_0x.f'\left(x\right)dx+\int\limits^2_0k^2x^2dx=0\)

\(\Leftrightarrow\dfrac{2}{3}-2k.\dfrac{4}{3}+\dfrac{8}{3}k^2=0\) do \(\int\limits^2_0x^2dx=\dfrac{8}{3}\)

\(\Rightarrow k=\dfrac{1}{2}\) 

\(\Rightarrow u\left(x\right)=\dfrac{1}{2}x\) coi như xong bài toán)

Do đó ta có:

\(\int\limits^2_0\left[f'\left(x\right)\right]^2-\int\limits^2_0xf'\left(x\right)+\dfrac{1}{4}\int\limits^2_0x^2dx=\dfrac{2}{3}-\dfrac{4}{3}+\dfrac{1}{4}.\dfrac{8}{3}=0\)

\(\Rightarrow\int\limits^2_0\left[f'\left(x\right)-\dfrac{1}{2}x\right]^2dx=0\)

\(\Rightarrow f'\left(x\right)-\dfrac{1}{2}x=0\)

\(\Rightarrow f'\left(x\right)=\dfrac{1}{2}x\Rightarrow f\left(x\right)=\dfrac{1}{4}x^2+C\)

Thay \(x=2\Rightarrow1=1+C\Rightarrow C=0\)

\(\Rightarrow f\left(x\right)=\dfrac{1}{4}x^2\)

NV
7 tháng 11 2021

Vẫn là đạo hàm của tích

Dễ dàng viết được:

\(\left[f'\left(x\right)\right]^2+f\left(x\right).f''\left(x\right)=\left[f\left(x\right)\right]'.f'\left(x\right)+f\left(x\right).\left[f'\left(x\right)\right]'=\left[f'\left(x\right).f\left(x\right)\right]'\)

Do đó giả thiết biến đổi thành:

\(\left[f'\left(x\right).f\left(x\right)\right]'=15x^4+12x\)

Nguyên hàm 2 vế:

\(f'\left(x\right).f\left(x\right)=\int\left(15x^4+12x\right)dx=3x^5+6x^2+C\)

Thay \(x=0\)

\(\Rightarrow f'\left(0\right).f\left(0\right)=C\Rightarrow C=1\)

\(\Rightarrow f'\left(x\right).f\left(x\right)=3x^5+6x^2+1\)

Tiếp tục nguyên hàm 2 vế:

\(\int f\left(x\right).f'\left(x\right)dx=\int\left(3x^5+6x^2+1\right)dx\) với chú ý \(\int f\left(x\right).f'\left(x\right)dx=\int f\left(x\right).d\left[f\left(x\right)\right]=\dfrac{1}{2}f^2\left(x\right)+C\)

Nên:

\(\Rightarrow\dfrac{1}{2}f^2\left(x\right)=\dfrac{1}{2}x^6+2x^3+x+C\)

Thay \(x=0\Rightarrow C=\dfrac{1}{2}\)

\(\Rightarrow\dfrac{1}{2}f^2\left(x\right)=\dfrac{1}{2}x^6+2x^3+x+\dfrac{1}{2}\)

\(\Rightarrow f^2\left(1\right)\)