K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 7 2021

\(y=f\left(x\right)=\left(x-1\right)\left(2x-3\right)\) đồng biến khi: \(\left(x-1\right)\left(2x-3\right)>0\)

\(\Leftrightarrow x-1>0;2x-3>0\) hoặc \(x-1< 0;2x-3< 0\)

\(\Leftrightarrow x>1;x>\frac{3}{2}\) hoặc \(x< 1;x< \frac{3}{2}\)

\(\Leftrightarrow x>\frac{3}{2}\) hoặc \(x< 1\)

\(y=f\left(x\right)=\left(x-1\right)\left(2x-3\right)\) nghịch biến khi: \(\left(x-1\right)\left(2x-3\right)< 0\)

\(\Leftrightarrow x-1>0;2x-3< 0\) hoặc \(x-1< 0;2x-3>0\)

\(\Leftrightarrow x>1;x< \frac{3}{2}\) hoặc \(x< 1;x>\frac{3}{2}\)

\(\Leftrightarrow1< x< \frac{3}{2}\)

NV
22 tháng 6 2021

1.

\(f'\left(x\right)=\left(x^2-1\right)\left(x-2\right)^2\left(x-3\right)\) có các nghiệm bội lẻ \(x=\left\{-1;1;3\right\}\)

Sử dụng đan dấu ta được hàm đồng biến trên các khoảng: \(\left(-1;1\right);\left(3;+\infty\right)\)

Hàm nghịch biến trên các khoảng \(\left(-\infty;-1\right);\left(1;3\right)\)

2.

\(y'=4x^3-4x=0\Rightarrow\left[{}\begin{matrix}x=-1\\x=0\\x=1\end{matrix}\right.\)

Lập bảng xét dấu y' ta được hàm đồng biến trên \(\left(-1;0\right);\left(1;+\infty\right)\)

Hàm nghịch biến trên \(\left(-\infty;-1\right);\left(0;1\right)\)

14 tháng 9 2017

5 tháng 8 2023

ĐỀ ĐÂY NHA
loading...

loading...

1 tháng 8 2019

14 tháng 10 2017

Đáp án A

JVYAHzY4BSxs.png

2bHArerwhPsX.png

oUAZRYQyi9QL.png

Vậy hàm số g(x) nghịch biến trên (-4; -2)

4 tháng 4 2019

21 tháng 8 2018

Ta có 

Bảng biến thiên của hàm số y= g( x)

VYxMvmtHGN5P.png

Dựa vào bảng biến thiên ta thấy hàm số đồng biến trên khoảng ( 3: + ∞)  hàm số nghịch biến trong khoảng (-∞; -3) .

Hàm số có 3 cực trị, hàm số đạt giá trị nhỏ nhất tại x= ±3

Vậy có 3 khẳng định đúng là khẳng định I, II, IV

Chọn C.

20 tháng 6 2017

5 tháng 4 2017