\(f\left(x\right)\) có đạo hàm và liên tục trên R và thỏa nãm:

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 3 2020

Đặt: \(\left\{{}\begin{matrix}u=tanx\\dv=f'\left(x\right)dx\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}du=1+tan^2x\\v=f\left(x\right)\end{matrix}\right.\)

Suy ra I=\(\int_0^3f\left(x\right)tan^2xdx+f\left(x\right)x|^3_0-\int_0^3f\left(x\right)dx-\int_0^3f\left(x\right)tan^2xdx\)

\(\Leftrightarrow\)I=f(3).3-\(\int_0^3f\left(x\right)dx\)=3cot(3)-10

Bạn tham khảo nha, nếu không hiểu chỗ nào thì mình giải đáp nha

26 tháng 3 2020

bạn có nhầm lỗi nhỏ nhé, ở hàng suy ra sau dấu + thứ nhất phải là \(f\left(x\right)tan\left(x\right)|^3_0\) nhé bạn.

Nhưng cũng cám ơn bạn hí

NV
11 tháng 4 2019

Câu 1:

\(\int\limits^3_0\left(f'\left(x\right)+1\right)\sqrt{x+1}dx=\int\limits^3_0f'\left(x\right)\sqrt{x+1}dx+\int\limits^3_0\sqrt{x+1}dx\)

\(=\int\limits^3_0f'\left(x\right)\sqrt{x+1}dx+\frac{14}{3}=\frac{302}{15}\Rightarrow\int\limits^1_0f'\left(x\right)\sqrt{x+1}dx=\frac{232}{15}\)

Ta có:

\(I=\int\limits^3_0\frac{f\left(x\right)dx}{\sqrt{x+1}}\)

Đặt \(\left\{{}\begin{matrix}u=f\left(x\right)\\dv=\frac{dx}{\sqrt{x+1}}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}du=f'\left(x\right)dx\\v=2\sqrt{x+1}\end{matrix}\right.\)

\(\Rightarrow I=2f\left(x\right)\sqrt{x+1}|^3_0-2\int\limits^3_0f'\left(x\right)\sqrt{x+1}dx\)

\(=4f\left(3\right)-2f\left(0\right)-2.\frac{232}{15}\)

\(=2\left(2f\left(3\right)-f\left(0\right)\right)-\frac{464}{15}=36-\frac{464}{15}=\frac{76}{15}\)

NV
11 tháng 4 2019

Câu 2:

\(I_1=\int\limits^3_1\frac{xf'\left(x\right)}{x+1}dx=0\)

Đặt \(\left\{{}\begin{matrix}u=\frac{x}{x+1}\\dv=f'\left(x\right)dx\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}du=\frac{1}{\left(x+1\right)^2}dx\\v=f\left(x\right)\end{matrix}\right.\)

\(\Rightarrow I_1=\frac{xf\left(x\right)}{x+1}|^3_1-\int\limits^3_1\frac{f\left(x\right)}{\left(x+1\right)^2}=\frac{3.3}{3+1}-\frac{1.3}{1+1}-\int\limits^3_1\frac{f\left(x\right)}{\left(x+1\right)^2}dx=\frac{3}{4}-\int\limits^3_1\frac{f\left(x\right)}{\left(x+1\right)^2}dx=0\)

\(\Rightarrow\int\limits^3_1\frac{f\left(x\right)}{\left(x+1\right)^2}dx=\frac{3}{4}\)

Ta có:

\(I=\int\limits^3_1\frac{f\left(x\right)+lnx}{\left(x+1\right)^2}dx=\int\limits^3_1\frac{f\left(x\right)}{\left(x+1\right)^2}dx+\int\limits^3_1\frac{lnx}{\left(x+1\right)^2}dx=\frac{3}{4}+I_2\)

Xét \(I_2=\int\limits^3_1\frac{lnx}{\left(x+1\right)^2}dx\Rightarrow\) đặt \(\left\{{}\begin{matrix}u=lnx\\dv=\frac{1}{\left(x+1\right)^2}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}du=\frac{dx}{x}\\v=\frac{-1}{x+1}\end{matrix}\right.\)

\(\Rightarrow I_2=\frac{-lnx}{x+1}|^3_1+\int\limits^3_1\frac{dx}{x\left(x+1\right)}=-\frac{1}{4}ln3+\int\limits^1_0\left(\frac{1}{x}-\frac{1}{x+1}\right)dx\)

\(=-\frac{1}{4}ln3+ln\left(\frac{x}{x+1}\right)|^3_1=-\frac{1}{4}ln3+ln\frac{3}{4}-ln\frac{1}{2}=\frac{3}{4}ln3-ln2\)

\(\Rightarrow I=\frac{3}{4}+\frac{3}{4}ln3-ln2\)

Tham khảo:

Giả sử hàm số f(x) là hàm số chẵn trên đoạn [-a; a], ta có:

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Đổi biến x = - t đối với tích phân

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Ta được:

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Vậy

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Trường hợp sau chứng minh tương tự. Áp dụng:

Vì Giải sách bài tập Toán 12 | Giải sbt Toán 12

là hàm số lẻ trên đoạn [-2; 2] nên Giải sách bài tập Toán 12 | Giải sbt Toán 12

AH
Akai Haruma
Giáo viên
4 tháng 7 2017

Lời giải:

Ta có : \(10=\int ^{3}_{1}f(2x)dx=\frac{1}{2}\int ^{3}_{1}f(2x)d(2x)=\frac{1}{2}\int ^{6}_{2}f(x)dx\)

\(\Rightarrow \int ^{6}_{2}f(x)d(x)=20\)

\(\int ^{2}_{0}f(x)dx=-5\Rightarrow \int ^{6}_{0}f(x)dx=15\)

Do đó mà \(\int ^{2}_{0}f(3x)dx=\frac{1}{3}\int ^{2}_{0}f(3x)d(3x)=\frac{1}{3}\int ^{6}_{0}f(x)dx=5\)

NV
6 tháng 4 2019

Câu 1:

\(2f\left(x\right)+3f\left(\frac{2}{3x}\right)=5x\) (1)

Đặt \(t=\frac{2}{3x}\Rightarrow x=\frac{2}{3t}\)

\(\Rightarrow2f\left(\frac{2}{3t}\right)+3f\left(t\right)=5.\frac{2}{3t}\Leftrightarrow2f\left(\frac{2}{3t}\right)+3f\left(t\right)=\frac{10}{3t}\)

\(\Rightarrow2f\left(\frac{2}{3x}\right)+3f\left(x\right)=\frac{10}{3x}\Leftrightarrow3f\left(\frac{2}{3x}\right)+\frac{9}{2}f\left(x\right)=\frac{5}{x}\) (2)

Trừ vế cho vế của (2) cho (1):

\(\frac{5}{2}f\left(x\right)=\frac{5}{x}-5x\Rightarrow f\left(x\right)=\frac{2}{x}-2x\)

\(\Rightarrow\int\limits^1_{\frac{2}{3}}\frac{f\left(x\right)}{x}dx=\int\limits^1_{\frac{2}{3}}\left(\frac{2}{x^2}-2\right)dx=\left(-\frac{2}{x}-2x\right)|^1_{\frac{2}{3}}=\frac{1}{3}\)

NV
6 tháng 4 2019

Câu 2:

\(3f\left(x\right)-4f\left(2-x\right)=-x^2-12x+16\) (1)

Đặt \(2-x=t\Rightarrow x=2-t\)

\(\Rightarrow3f\left(2-t\right)-4f\left(t\right)=-\left(2-t\right)^2-12\left(2-t\right)+16\)

\(\Rightarrow3f\left(2-t\right)-4f\left(t\right)=-t^2+16t-12\)

\(\Rightarrow3f\left(2-x\right)-4f\left(x\right)=-x^2+16x-12\)

\(\Rightarrow4f\left(2-x\right)-\frac{16}{3}f\left(x\right)=-\frac{4}{3}x^2+\frac{64}{3}x-16\) (2)

Cộng (1) và (2):

\(-\frac{7}{3}f\left(x\right)=-\frac{14}{3}x^2+\frac{28}{3}x\)

\(\Rightarrow f\left(x\right)=2x^2-4x\)

\(\Rightarrow\int\limits^2_0f\left(x\right)dx=\int\limits^2_0\left(2x^2-4x\right)dx=-\frac{8}{3}\)

NV
30 tháng 5 2019

Xét tích phân \(I=\int\limits^1_0e^xf\left(x\right)dx\)

Đặt \(\left\{{}\begin{matrix}u=f\left(x\right)\\dv=e^xdx\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}du=f'\left(x\right)dx\\v=e^x\end{matrix}\right.\)

\(\Rightarrow I=e^x.f\left(x\right)|^1_0-\int\limits^1_0e^xf'\left(x\right)dx=e.f\left(1\right)-f\left(0\right)-I\)

\(\Rightarrow2I=e.f\left(1\right)-f\left(0\right)\)

Xét tích phân \(J=\int\limits^1_0f'\left(x\right)dx=I\)

Đặt \(\left\{{}\begin{matrix}u=f'\left(x\right)\\dv=e^xdx\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}du=f''\left(x\right)dx\\v=e^x\end{matrix}\right.\)

\(\Rightarrow I=J=e^x.f'\left(x\right)|^1_0-\int\limits^1_0e^x.f''\left(x\right)dx=e.f'\left(1\right)-f'\left(0\right)-I\)

\(\Rightarrow2I=e.f'\left(1\right)-f'\left(0\right)\)

\(\Rightarrow\frac{e.f'\left(1\right)-f'\left(0\right)}{e.f\left(1\right)-f\left(0\right)}=\frac{2I}{2I}=1\)