Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. \(f\left(x\right)=25x^2-20x+\dfrac{9}{2}\)
=>\(f\left(x\right)=25x^2-20x+4+\dfrac{1}{2}\)
=> \(f\left(x\right)=(25x^2-20x+4)+\dfrac{1}{2}\)
=> \(f\left(x\right)=(5x-2)^2+\dfrac{1}{2}\)
Ta thấy: \((5x-2)^2\ge0\)
=>\(f\left(x\right)=(5x-2)^2+\dfrac{1}{2}\ge\dfrac{1}{2}>0\)(đpcm)
2. \(f\left(x\right)=4x^2-28x+50\)
=> \(f\left(x\right)=(4x^2-28x+49)+1\)
=> \(f\left(x\right)=(2x-7)^2+1\)
Ta thấy: \((2x-7)^2\ge0\)
=> \(f\left(x\right)=(2x-7)^2+1\ge1>0\) (đpcm)
3. \(f\left(x\right)=-16x^2+72x-82\)
=> \(f\left(x\right)=-(16x^2-72x+82)\)
=> \(f\left(x\right)=-(16x^2-72x+81+1)\)
=> \(f\left(x\right)=-[(4x-9)^2+1]\)
Ta thấy: \((4x-9)^2\ge0\)
=> \((4x-9)^2+1\ge1>0\)
=> \(f\left(x\right)=-[(4x-9)^2+1]< 0\)
5. \(f\left(x;y\right)=4x^2+9y^2-12x+6y+11\)
=> \(f\left(x;y\right)=4x^2+9y^2-12x+6y+9+1+1\)
=> \(f\left(x;y\right)=(4x^2-12x+9)+(9y^2+6y+1)+1\)
=> \(f\left(x;y\right)=(2x-3)^2+(3y+1)^2+1\)
Ta thấy: \((2x-3)^2\ge0\)
\((3y+1)^2\ge0\)
=> \(f\left(x;y\right)=(2x-3)^2+(3y+1)^2+1\) \(\ge1>0\) (đpcm)
f(0) = a . 0 + b = b
f(f(0)) = f(b) = a . b + b = ab + b
f(f(f(0))) = f(ab + b) = a . (ab + b) + b = a2b + ab + b
f(1) = a . 1 + b = a + b
f(f(1)) = f(a + b) = a . (a + b) + b = a2 + ab + b
f(f(f(1))) = f(a2 + ab + b) = a . (a2 + ab + b) + b = a3 + a2b + ab + b
a3 + a2b + ab + b = 29
a2b + ab + b = 2
=> (a3 + a2b + ab + b) - (a2b + ab + b) = 29 - 2
a3+ a2b + ab + b - a2b - ab - b = 27
a3 = 33
a = 3
\(f\left(x\right)+f\left(1-x\right)=\frac{100^x}{100^x+100}+\frac{100^{1-x}}{100^{1-x}+100}\)
Nhân cả tử và mẫu của \(\frac{100^{1-x}}{100^{1-x}+100}\) với \(100^x\) ta được:
\(f\left(x\right)+f\left(1-x\right)=\frac{100^x}{100^x+100}+\frac{100}{100+100^x}=\frac{100^x+100}{100^x+100}=1\)
Vậy: \(S=f\left(\frac{1}{2009}\right)+f\left(\frac{2008}{2009}\right)+f\left(\frac{2}{2009}\right)+f\left(\frac{2007}{2009}\right)+...+f\left(\frac{1004}{2009}\right)+f\left(\frac{1005}{2009}\right)\)
\(S=1+1+1+...+1\) (có \(\frac{2008-1+1}{2}=1004\) số 1)
\(S=1004\)
giá trị của : f(0) + f(1) + f(2) + f(3) + f(4) + f(5) + f(6) +f(7) + f(8)
= -3-3-2+1+8+23+54+117+244
= 439
ý mk là cái cách lm cơ ????