K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 12 2019

a) f(-3) = 2

hay y = f(-3) = a.(-3) = 2

=> a = 2 : (-3) = -2/3

vậy đồ thị có dạng: y = -2/3x

đồ thị hàm số y = -2/3x là đường thẳng đi qua gốc tọa độ O và A(3; -2)

O y x 3 -2 A y=-2/3x

b) tìm y chứ??

f(x) = -6

hay y = -2/3 . (-6) = 4

5 tháng 3 2017

\(y=f\left(x\right)=\frac{27-2x}{12-x}=\frac{3+24-2x}{12-x}=\frac{3+2\left(12-x\right)}{12-x}=2+\frac{3}{12-x}\)

Để \(f\left(x\right)=2+\frac{3}{12-x}\) đạt GTLN <=> \(\frac{3}{12-x}\) đạt GTLN

=> 12 - x là số nguyên dương nhỏ nhất 

=> 12 - x = 1 => x = 11

Vậy GTLN của hàm số đó là 5 tại x = 11

Để \(f\left(x\right)=2+\frac{3}{12-x}\) đạt GTNN <=> \(\frac{3}{12-x}\)đạt GTNN

=> 12 - x là số nguyên âm lớn nhất

=> 12 - x = - 1 => x = 13

Vậy \(y_{min}=-1\Leftrightarrow x=13\)

7 tháng 9 2016

Để M có giá trị nguyên thì x - 2 chia hết cho x + 3

=> (x + 3) - 5 chia hét cho x + 3

=> 5 chia hết cho x + 3

=> x + 3 thuộc Ư(5) = {-1;1;-5;5}

Ta có:

x + 3-5-115
x-8-4-22
5 tháng 5 2017

Ta có:M=\(\dfrac{2014-x}{x-2013}\)

=\(\dfrac{-x+2014}{x-2013}\)=\(\dfrac{-\left(x-2013-1\right)}{x-2013}\)=\(\dfrac{1}{x-2013}\)

Để M có giá trị nhỏ nhất thì\(\dfrac{1}{x-2013}\)=1

=>x=2014

8 tháng 5 2016

Ta có: |x-1| + |x-2| = |x-1| + |2-x|

Mà |x-1| + |x-2| \(\ge\) |x-1+x-2| hay |x-1| + |2-x| \(\ge\) |x-1+2-x|

                                         \(\Rightarrow\) |x-1| + |2-x| \(\ge\) 1

Vậy A có GTNN là 1 khi x \(\in\) {1;2}

    

8 tháng 5 2016

\(A=\left|x-1\right|+\left|x-2\right|=\left|x-1\right|+\left|2-x\right|\)

Áp dụng bất đẳng thức : \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\),dấu "=" xảy ra \(\Leftrightarrow ab\ge0\),ta có:

\(A\ge\left|\left(x-1\right)+\left(2-x\right)\right|=\left|x-1+2-x\right|=\left|1\right|=1\)

\(\Rightarrow A_{min}=1\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(\left(x-1\right)\left(2-x\right)\ge0\Leftrightarrow1\le x\le2\)

8 tháng 2 2019

\(\left|2014-x\right|+\left|2015-x\right|+\left|2016-x\right|\)

\(=\left|x-2014\right|+\left|2016-x\right|+\left|2015-x\right|\)

\(\ge\left|x-2014+2016-x\right|+\left|2015-x\right|\)

\(=2+\left|2015-x\right|\ge2\)

Dấu bằng xảy ra khi: \(\hept{\begin{cases}\left(x-2014\right)\left(2016-x\right)\ge0\\2015-x=0\end{cases}}\Rightarrow x=2015\)

8 tháng 2 2019

Ta có: \(\left|2014-x\right|+\left|2016-x\right|=\left|x-2014\right|+\left|2016-x\right|\ge\left|x-2014+2016-x\right|=2\)

Dấu "=" xảy ra <=> \(\left(2014-x\right)\left(2016-x\right)\ge0\)

                      <=> \(2014\le x\le2016\) (1)

Mặt khác \(\left|2015-x\right|\ge0\). Dấu "=" xảy ra <=> 2015-x = 0 <=> x = 2015 (2)

Ta thấy điều kiện (2) và (1) thỏa nhau

Nên kết hợp cả hai ta suy ra: GTNN của |2014-x|+|2015-x|+|2016-x| bằng 2 khi x = 2015