Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Trong tứ giác AOBM có = = .
Suy ra cung AMB + =
=> cung AMB= -
= -
=
b) Từ = . Suy ra số đo cung nhỏ AB = và số đo cung lớn AB :
Cung AB = - =
a) Ta có là góc có đỉnh ở bên ngoài đường tròn nên:
\(\widehat{AEB}=\dfrac{sđ\left(\widehat{AB}-\widehat{CD}\right)}{2}=\dfrac{180^O-60^O}{2}=60^O\)
và \(\widehat{BTC}\) cũng là góc có đỉnh ở bên ngoài đường tròn ( hai cạnh đều là tiếp tuyến của đường tròn) nên:
\(\widehat{BTC}\) = sđ\(\dfrac{\widehat{BAC}-\widehat{BDC}}{2}=\dfrac{\left(180^O+60^O\right)-\left(60^O+60^O\right)}{2}=60^O\)
Vậy =
b) \(\widehat{DCT}\) là góc tạo bởi tiếp tuyến và dây cung nên:
\(\widehat{DCT}=\dfrac{sđ\widehat{CD}}{2}=\dfrac{60^o}{2}=30^o\)
→ \(\widehat{DCB}\) là góc nội tiếp trên
\(\widehat{DCB}\) = \(\dfrac{sđ\widehat{DB}}{2}\) = \(\dfrac{60^O}{2}=30^O\)
Vậy \(\widehat{DCT}\) = \(\widehat{DCB}\) hay CD là phân giác của \(\widehat{BCT}\)
O A B C M a) có OA = OB (=R)
=> O thuộc đường trung trực của AB
=> M là trung điểm của AB
=> MA = MB
(O) nhỏ có AB là tiếp tuyến tại M (gt)
=> AB \(\perp OM\) tại M ( t/c tiếp tuyến)
xét \(\Delta MAC\) vuông tại M (AB vuông OM cmt)
\(\Delta MBC\) vuông tại M ('' '' '')
có MA = MB ( cmt)
MC chung
=> \(\Delta MAC=\Delta MBC\) (2cgv)
=> AC = CB ( 2 cạnh t/ư)
(O) lớn có dây AC = dây CB (cmt)
=>\(\stackrel\frown{AC}=\stackrel\frown{CB}\) ( 2 dây = nhau căng 2 cung = nhau)
b)
có \(\Delta OAMvuôngtạiM\) (OM vuông AB)
=> \(OA^2=OM^2+MA^2\) (định lí pytago)
=> \(R^2=\left(\dfrac{R\sqrt{3}}{2}\right)^2+MA^2\)
=> MA = \(\dfrac{1}{2}R\)
có AB = MA + MB (vì M thuộc AB)
hay AB = 2 . MA (vì M A= MB cmt)
= 2.\(\dfrac{1}{2}R\)
=R
=> AB = OA = OB (VÌ OA=OB =R)
=>\(\Delta OAB\) đều
=> \(\widehat{OAB}=60^0\)
=> \(\stackrel\frown{AB}=60^0\)
Chọn đáp án B