K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

HQ
Hà Quang Minh
Giáo viên
11 tháng 1 2024

Xét tam giác ABC có:

\(\begin{array}{l}\widehat A + \widehat B + \widehat C = 180^\circ \\ \Rightarrow 70^\circ  + 80^\circ  + \widehat C = 180^\circ \\ \Rightarrow \widehat C = 30^\circ \end{array}\)

Xét tam giác ABC và tam giác PMN có:

\(\begin{array}{l}\widehat B = \widehat M = 80^\circ \\\widehat C = \widehat N = 30^\circ \end{array}\)

\( \Rightarrow \Delta ABC \backsim \Delta PMN\) (g-g)

\( \Rightarrow \frac{{AB}}{{PM}} = \frac{{BC}}{{MN}} = \frac{{CA}}{{NP}}\) (Tỉ số đồng dạng)

HQ
Hà Quang Minh
Giáo viên
11 tháng 1 2024

Xét tam giác ABC có:

\(\begin{array}{l}\widehat A + \widehat B + \widehat C = 180^\circ \\ \Rightarrow 50^\circ  + 60^\circ  + \widehat C = 180^\circ \\ \Rightarrow \widehat C = 70^\circ \end{array}\)

Xét tam giác ABC và tam giác MNP có:

\(\begin{array}{l}\widehat B = \widehat N = 60^\circ \\\widehat C = \widehat P = 70^\circ \end{array}\)

\( \Rightarrow \Delta ABC \backsim \Delta MNP\) (g-g).

22 tháng 7 2023

Ta có tổng 4 góc trong tứ giác là: \(360^o\)

\(\Rightarrow\widehat{A}+\widehat{B}+\widehat{C}+\widehat{D}=360^o\)

Hay: \(60^o+110^o+\widehat{C}+70^o=360^o\)

\(\Rightarrow\widehat{C}=360^o-\left(110^o+60^o+70^o\right)120^o\)

Vậy chọn đáp án A

Chọn A

HQ
Hà Quang Minh
Giáo viên
8 tháng 9 2023

a) Hình thang \(MNPQ\) có \(\widehat Q = 90^\circ \) nên là hình thang vuông. Suy ra \(\widehat M = 90^\circ \)

Áp dụng định lí tổng các góc của một tứ giác, ta có: \(\widehat P = 360^\circ  - \left( {90^\circ  + 90^\circ  + 125^\circ } \right) = 55^\circ \)

b) Hình thang \(MNPQ\) có \(\widehat P = \widehat Q = 110^\circ \) nên là hình thang cân.

Suy ra \(\widehat M = \widehat N = 180^\circ  - 110^\circ  = 70^\circ \)

HQ
Hà Quang Minh
Giáo viên
12 tháng 1 2024

a) Vì \(\Delta DEG \backsim \Delta MNP\) nên \(\widehat D = \widehat M,\,\,\widehat E = \widehat N,\,\,\widehat G = \widehat P\)

\( \Rightarrow \widehat D = \widehat M = 40^\circ \)

\( \to \) Chọn đáp án A.

b) Theo câu a) ta có \(\widehat E = \widehat N = 60^\circ \)

\( \to \) Chọn đáp án C.

c) Xét tam giác MNP có:

\(\begin{array}{l}\widehat M + \widehat N + \widehat P = 180^\circ \\ \Rightarrow 40^\circ  + 60^\circ  + \widehat P = 180^\circ \\ \Rightarrow \widehat P = 80^\circ \end{array}\)

\( \to \) Chọn đáp án D.

25 tháng 1 2024

a) Δ���∽Δ���ΔAIEΔACI (g.g) suy ra ����=����ACAI=AIAE hay ��2=��.��AI2=AE.AC (1)

Chứng minh tương tự:

Δ���∽Δ���ΔAIKΔAKB (g.g) suy ra ����=����ABAK=AKAF hay ��2=��.��AK2=AB.AF (2)

Mà Δ���∽Δ���ΔABEΔACF (g.g) suy ra ����=����ACAB=AFAE hay ��.��=��.��AB.AF=AC.AE (3)

Từ (1), (2) và (3) ta có ��2=��2AI2=AK2 suy ra ��=��AI=AK.

b) Vì �^=60∘A=60 suy ra �1^=30∘B1=30

Trong tam giác ���ABE vuông tại E nên ��=12��,AE=21AB,

Trong tam giác ���AFC vuông tại F có �1^=30∘C1=30 suy ra ��=12��AF=21AC.

Do đó, Δ���∽Δ���ΔAEFΔABC (c.g.c).

suy ra ��������=(����)2=14SABCSAEF=(ABAE)2=41.

Vậy ����=14.120=30SAEF=41.120=30 cm22.

HQ
Hà Quang Minh
Giáo viên
11 tháng 1 2024

Vì \(\Delta ABC \backsim \Delta MNP\) nên:

\(\left\{ \begin{array}{l}\widehat A = \widehat M = 45^\circ \\\widehat B = \widehat N = 60^\circ \\\widehat C = \widehat P\end{array} \right.\)

Xét tam giác ABC có:

\(\begin{array}{l}\widehat A + \widehat B + \widehat C = 180^\circ \\45^\circ  + 60^\circ  + \widehat C = 180^\circ \\\widehat C = 180^\circ  - 45^\circ  - 60^\circ  = 75^\circ \end{array}\)

\( \Rightarrow \widehat C = \widehat P = 75^\circ \)

Gọi góc ngoài đỉnh B là x

Ta có:

$\widehat {B} + x = 180^0 $

`=>`$ \widehat {B} + 110^0 = 180^0$

`=>` $\widehat {B} = 70^0$

Xét tứ giác ABCD:

$\widehat {A} + \widehat {B} + \widehat {C} + \widehat {D}= 360^0$

`=>` $100^0 + 70^0 + 75^0 + \widehat {D} = 360^0$

`=>` $\widehat {D} = 115^0$

Vậy, $\widehat {D} = 115^0.$

góc B=180-110=70 độ

góc D=360-100-70-75=115 độ

HQ
Hà Quang Minh
Giáo viên
11 tháng 1 2024

Xét tam giác A’B’C’ và tam giác ABC có:

\(\frac{{A'B'}}{{AB}} = \frac{{A'C'}}{{AC}}\) và \(\widehat {A'} = \widehat A = 90^\circ \)

\( \Rightarrow \Delta A'B'C' \backsim \Delta ABC\) (c-g-c)

HQ
Hà Quang Minh
Giáo viên
14 tháng 9 2023

Đáp án đúng là C

Vì \(\Delta ABC\backsim\Delta DEF\) nên \(\widehat A = \widehat D;\widehat B = \widehat E;\widehat C = \widehat F\).

Xét tam giác \(ABC\) có:

\(\widehat A + \widehat B + \widehat C = 180^\circ \) (định lí tổng ba góc trong một tam giác).

Thay số, \(85^\circ  + 60^\circ  + \widehat C = 180^\circ  \Rightarrow \widehat C = 180^\circ  - 60^\circ  - 85^\circ  = 35^\circ \)

Vì \(\widehat C = \widehat F\) nên \(\widehat F = 35^\circ \).

14 tháng 9 2023

Câu C.