Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(T=\frac{1}{1+x^2}+\frac{4}{4+y^2}+xy=\frac{y^2+4+4+4x^2}{\left(1+x^2\right)\left(4+y^2\right)}+xy=\frac{y^2+4x^4+4}{\left(1+x^2\right)\left(4+y^2\right)}+xy\)
Áp dụng BĐT Cosi:
\(y^2+4x^2\ge4xy\ge8\)
\(\hept{\begin{cases}x^2+1\ge2x\\y^2+4\ge4y\end{cases}\Rightarrow\left(x^2+1\right)\left(y^2+4\right)\ge8xy\ge16}\)
=> \(\frac{y^2+4x^2+8}{\left(x^2+1\right)\left(y^2+4\right)}\ge\frac{8}{16}=\frac{1}{2}\)
=> \(T\ge\frac{1}{2}+2=\frac{5}{2}\)
\(Min_T=\frac{5}{2}\Leftrightarrow\hept{\begin{cases}y=2x\\xy=2\end{cases}}\) <=> \(\hept{\begin{cases}x=-1\\y=-2\end{cases}}\)hoặc \(\hept{\begin{cases}x=1\\y=2\end{cases}}\)
Đặt \(a=3x^2+xy+2y^2=>0\le a\le2\)
xét 2 TH
+) Nếu a=0 thì x=y=0 nên P =0
+) nếu \(a\ne0\)thì x hoặc y phải khác 0
xét biểu thức
\(\frac{P}{a}=\frac{x^2+3xy-y^2}{3x^2+xy+2y^2}\)
nếu y=0 thì \(x\ne0=>\frac{P}{a}=\frac{1}{3}< P=\frac{a}{3}\le\frac{2}{3}\)
-xét TH y khác 0 , khi đó đặt \(t=\frac{x}{y}\), ta có
\(\frac{P}{a}=\frac{x^2+3xy-y^2}{3x^2+xy+2y^2}=\frac{t^2+3t-1}{3t^2+t+2}\)
gọi m là một giá trị \(\frac{P}{a}\), khi đó PT sau có nghiệm
\(m=\frac{t^2+3t-1}{3t^2+t+2}\)
\(=>\left(3m-1\right)t^2+\left(m-3\right)t+2m+1=0\left(1\right)\)
nếu \(m=\frac{1}{3}\left(thì\right)t=\frac{5}{8}.Nếu\left(m\ne\frac{1}{3}\right)thì\left(1\right)\)là PT bậc 2 có nghiệm khi zà chỉ khi
\(\left(m-3\right)^2-4\left(3m-1\right)\left(2m+1\right)\ge0\)
\(\Leftrightarrow23m^2+10m-13\le0\Leftrightarrow m\le\frac{13}{23}=>-1\le\frac{P}{a}\le\frac{26}{23}\)
mà a>0 nên \(-2\le-a\le P\le\frac{13}{23}a\le\frac{26}{23}\)
kết hợp những TH zừa xét lại ta có
\(-2\le P\le\frac{26}{23}\)
làm tiếp nè , mình phải làm tách ra không sợ nó lag
\(P=-2\)khi zà chỉ khi
\(\hept{\begin{cases}\frac{x}{y}=\frac{3-m}{2\left(3m-1\right)}=-\frac{1}{2}\\3x^2+xy+2y^2=2\end{cases}\Leftrightarrow\hept{\begin{cases}y=-2x\\3x^2-2x^2+8x^2=2\end{cases}}}\)
\(\Leftrightarrow\hept{\begin{cases}y=-2x\\x=\pm\frac{\sqrt{2}}{3}\end{cases}\Leftrightarrow\hept{\begin{cases}x=\pm\frac{\sqrt{2}}{3}\\y=\mp\frac{2\sqrt{2}}{3}\end{cases}}}\)
zậy MinP=-2 khi ....
+) MaxP nhé
\(P=\frac{26}{13}\)khi
\(\hept{\begin{cases}\frac{x}{y}=\frac{3-m}{2\left(3m-1\right)}=\frac{7}{4}\\3x^2+xy+2y^2=2\end{cases}\Rightarrow\hept{\begin{cases}x=\frac{7}{4}y\\3\left(\frac{7}{4}y\right)+\frac{7}{4}y^2+2y^2=2\end{cases}}}\)
\(\Leftrightarrow\hept{\begin{cases}x=\frac{7}{4}y\\y=\pm\frac{4}{3}\sqrt{\frac{2}{23}}\end{cases}\Leftrightarrow\hept{\begin{cases}x=\pm\frac{7}{3}\sqrt{\frac{2}{23}}\\y=\pm\frac{4}{3}\sqrt{\frac{2}{23}}\end{cases}}}\)
zậy ....
https://diendantoanhoc.net/topic/182493-%C4%91%E1%BB%81-thi-tuy%E1%BB%83n-sinh-v%C3%A0o-l%E1%BB%9Bp-10-%C4%91hsp-h%C3%A0-n%E1%BB%99i-n%C4%83m-2018-v%C3%B2ng-2/
bài này năm trrong đề thi tuyển sinh vào lớp 10 ĐHSP Hà Nội Năm 2018 (vòng 2) bn có thể tìm đáp án trên mạng để tham khảo