\(\frac{x}{2}+\frac{8}{y}\le2\). Tìm GTNN của biểu thứ...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 5 2021

Áp dụng bđt Cô-si cho 2 số dương \(\frac{x}{2};\frac{8}{y}\) ta có:

\(\frac{x}{2}+\frac{8}{y}\ge2\sqrt{\frac{x}{2}\frac{8}{y}}=4\sqrt{\frac{x}{y}}\)

\(\Leftrightarrow2\ge4\sqrt{\frac{x}{y}}\Leftrightarrow0< \sqrt{\frac{x}{y}}\le\frac{1}{2}\Leftrightarrow0< \frac{x}{y}\le\frac{1}{4}\)

Đặt \(\frac{x}{y}=t\left(0< t\le\frac{1}{4}\right)\Rightarrow-t\ge\frac{-1}{4}\)

Ta có: \(K=t+\frac{2}{t}=32t+\frac{2}{t}-31t\ge2\sqrt{32t.\frac{2}{t}}-31t\ge16-\frac{31}{4}=\frac{33}{4}\)

Dấu '=' xảy ra <=> \(t=\frac{1}{4}\Leftrightarrow\hept{\begin{cases}x=2\\y=8\end{cases}}\)

Vậy GTNN của K là \(\frac{33}{4}\) tại x=2;y=8

DD
25 tháng 5 2021

\(2\ge\frac{x}{2}+\frac{8}{y}\ge2\sqrt{\frac{x}{2}.\frac{8}{y}}=4\sqrt{\frac{x}{y}}\Leftrightarrow\sqrt{\frac{x}{y}}\le\frac{1}{2}\Leftrightarrow\frac{y}{x}\ge4\)

\(K=\frac{x}{y}+\frac{2y}{x}=\frac{x}{y}+\frac{y}{16x}+\frac{31y}{16x}\ge2\sqrt{\frac{x}{y}.\frac{y}{16x}}+\frac{31}{16}.4=\frac{33}{4}\)

Dấu \(=\)xảy ra khi \(\hept{\begin{cases}\frac{x}{2}=\frac{y}{8}\\\frac{x}{2}+\frac{y}{8}=2\\\frac{x}{y}=\frac{y}{16x}\end{cases}}\Leftrightarrow\hept{\begin{cases}x=2\\y=8\end{cases}}\).

1 tháng 6 2020

tự làm là hạnh phúc của mỗi công dân.

25 tháng 11 2016

min=43.

cho mk ý kiến nhé

25 tháng 11 2016

\(B=\left(8x+\frac{2}{x}\right)+\left(18y+\frac{2}{y}\right)+\left(\frac{4}{x}+\frac{5}{y}\right)\ge2\sqrt{8x.\frac{2}{x}}+2\sqrt{18y.\frac{2}{y}}+23..\)

  \(B\ge2.4+2.6+23=43\)

B min = 43 khi \(\hept{\begin{cases}8x=\frac{2}{x}\\18y=\frac{2}{y}\\\frac{4}{x}=\frac{5}{y}\end{cases}\Leftrightarrow\hept{\begin{cases}x=\frac{1}{2}\\y=\frac{1}{3}\end{cases}.}}\)

22 tháng 1 2017

Ta có: \(1\ge x+y\ge2\sqrt{xy}\Rightarrow1\ge4xy\Rightarrow\frac{1}{xy}\ge4\)

\(\Rightarrow P\ge2\sqrt{\frac{1}{xy}}\cdot\sqrt{1+x^2y^2}=2\sqrt{\frac{1}{xy}+xy}\)

Mà \(\frac{1}{xy}+xy=\frac{15}{16}\cdot\frac{1}{xy}+\frac{1}{16xy}+xy\)

\(\ge\frac{15}{16}\cdot4+2\sqrt{\frac{1}{16xy}\cdot xy}=\frac{15}{16}\cdot4+\frac{2}{4}=\frac{17}{4}\)

\(\Rightarrow P\ge2\cdot\frac{\sqrt{17}}{2}=\sqrt{17}\) xảy ra khi \(x=y=\frac{1}{2}\)

22 tháng 1 2017

v~ máy mk ko gõ dc chữ "x" 

20 tháng 2 2019

                                    Lời giải

Dư đoán xảy ra cực trị tại \(x=y=\frac{1}{\sqrt{2}}\)

Ta biến đổi P như sau: \(P=\left(2x+\frac{1}{x}\right)+\left(2y+\frac{1}{y}\right)-\left(x+y\right)\)

\(\ge2\sqrt{2x.\frac{1}{x}}+2\sqrt{2y.\frac{1}{y}}-\left(x+y\right)\)\(=4\sqrt{2}-\left(x+y\right)\)

\(=4\sqrt{2}-\sqrt{2}\left(\sqrt{x^2.\frac{1}{2}}+\sqrt{y^2.\frac{1}{2}}\right)\)

\(\ge4\sqrt{2}-\sqrt{2}\left(\frac{x^2+y^2+1}{2}\right)=4\sqrt{2}-1\sqrt{2}=3\sqrt{2}\)

Vậy ...

12 tháng 12 2018

\(A=\frac{x}{x+1}+\frac{y}{y+1}+\frac{z}{z+1}\).Áp dụng BĐT Cauchy-Schwarz,ta có:

\(=\left(1-\frac{1}{x+1}\right)+\left(1-\frac{1}{y+1}\right)+\left(1-\frac{1}{z+1}\right)\)

\(=\left(1+1+1\right)-\left(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\right)\)

\(\ge3-\frac{9}{\left(x+y+z\right)+\left(1+1+1\right)}=\frac{3}{4}\)

Dấu "=" xảy ra khi x = y = z = 1/3

Vậy A min = 3/4 khi x=y=z=1/3

12 tháng 12 2018

Bỏ chữ "Áp dụng bđt Cauchy-Schwarz,ta có:"giùm mình,nãy đánh nhầm ở bài làm trước mà quên xóa đi!

4 tháng 5 2019

Dự đoán điểm rơi tại x = y = 2/3 ta sẽ làm như sau

\(A=x+y+\frac{1}{x}+\frac{1}{y}\)

    \(=\left(\frac{9x}{4}+\frac{1}{x}\right)+\left(\frac{9y}{4}+\frac{1}{y}\right)-\frac{5}{4}\left(x+y\right)\)

     \(\ge2\sqrt{\frac{9x}{4x}}+2\sqrt{\frac{9y}{4y}}-\frac{5}{4}.\frac{4}{3}=\frac{13}{3}\)

    Dấu "=" tại x = y = 2/3

4 tháng 5 2019

Cách khác là UCT (không hay như cách kia đâu=)

Ta sẽ chứng minh: \(x+\frac{1}{x}\ge-\frac{5}{4}x+3\)

\(\Leftrightarrow\frac{\left(3x-2\right)^2}{4x}\ge0\) (đúng)

Thiết lập tương tự BĐT còn lại và cộng theo vế ta được: \(VT\ge-\frac{5}{4}\left(x+y\right)+6\ge-\frac{5}{4}.\frac{4}{3}+6=\frac{13}{3}\)

Dấu "=" xảy ra khi 3x - 2 = 3y - 2 = 0 tức là x = y = 2/3