Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng BĐT AM - GM, ta có:
\(2\ge a^2+b^2\ge2ab\)
\(\Leftrightarrow ab\le1\)
\(A=a\sqrt{3b\left(a+2b\right)}+b\sqrt{3a\left(b+2a\right)}\)
\(\le\dfrac{a\left(3b+a+2b\right)}{2}+\dfrac{b\left(3a+b+2a\right)}{2}\)
\(=\dfrac{a\left(5b+a\right)+b\left(5a+b\right)}{2}\)
\(=\dfrac{a^2+10ab+b^2}{2}\)
\(\le\dfrac{2+10}{2}=6\)
Dấu "=" xảy ra khi a = b = 1
Bài 1, t nghĩ VP căn phải kéo dài hết
Áp dụng bđt bu nhi a, ta có
\(\left(\sqrt{ab}+\sqrt{cd}\right)^2\le\left(a+d\right)\left(b+c\right)\Rightarrow\sqrt{ab}+\sqrt{cd}\le\sqrt{\left(a+d\right)\left(b+c\right)}\left(ĐPCM\right)\)
Bài 2, Áp dụng bài 1, ta có
\(\left(a\sqrt{3a\left(a+2b\right)}+b\sqrt{3b\left(b+2a\right)}\right)\le\left(a^2+b^2\right)\left[3a\left(a+2b\right)+3b\left(b+2a\right)\right]\)
\(\le2\left(3a^2+6ab+3b^2+6ab\right)=2\left[3\left(a^2+b^2\right)+12ab\right]\le2\left(6+12ab\right)\)
Áp dụng bđt cô si, ta có
\(a^2+b^2\ge2ab\Rightarrow2\ge2ab\Rightarrow12\ge12ab\)
=>(...)^2<=36 => ...<=6 (ĐPcM)
dấu = xảy ra <=> a=b=1
^_^
\(VP=\frac{6}{\sqrt{\left(3a+bc\right)\left(3b+ca\right)\left(3c+ab\right)}}\)
\(=\frac{6}{\sqrt{\left[\left(a+b+c\right)a+bc\right]\left[\left(a+b+c\right)b+ca\right]\left[\left(a+b+c\right)c+ab\right]}}\)
\(=\frac{6}{\sqrt{\left(a+b\right)^2\left(b+c\right)^2\left(c+1\right)^2}}=\frac{6}{\left(a+b\right)\left(b+c\right)\left(a+c\right)}\)
\(VT=\frac{1}{3a+bc}+\frac{1}{3b+ca}+\frac{1}{3c+ab}\)
\(=\frac{1}{\left(a+b+c\right)a+bc}+\frac{1}{\left(a+b+c\right)b+ac}+\frac{1}{\left(a+b+c\right)c+ab}\)
\(=\frac{\left(b+c\right)+\left(a+c\right)+\left(a+b\right)}{\left(a+b\right)\left(b+c\right)\left(a+c\right)}=\frac{6}{\left(a+b\right)\left(b+c\right)\left(a+c\right)}\)
Vậy VT = VP, đẳng thức được chứng minh
Áp dụng bất đẳng thức bunhiacopxki cho 2 bộ số (a;b) và \(\left(\sqrt{3b\left(a+2b\right)};b\sqrt{3a\left(b+2a\right)}\right)\) ta được:
\(P^2\le\left(a^2+b^2\right)\left(6a^2+6ab+6b^2\right)=12\left(a^2+ab+b^2\right)=12\left(2+ab\right)\le12\left(2+1\right)=36\)(vì \(a^2+b^2\ge2ab\Leftrightarrow ab\le\dfrac{a^2+b^2}{2}=\dfrac{2}{2}=1\))
Do đó \(P^2\le36\Leftrightarrow P\le6\) (không có giá trị nhỏ nhất vì P luôn lớn hoặc =0 nên không thể lớn hơn hoặc = -6)
Vậy Max P= 6 khi a=b=1
\(\sqrt{a^2+ab+2b^2}=\sqrt{\left(\frac{3}{4}a+\frac{5}{4}b\right)^2+\frac{7}{16}\left(a-b\right)^2}\ge\sqrt{\left(\frac{3}{4}a+\frac{5}{4}b\right)^2}=\frac{3a+5b}{4}\)
Tương tự \(\sqrt{b^2+2c^2+bc}\ge\frac{3b+5c}{4};\sqrt{c^2+2a^2+ca}\ge\frac{3c+5a}{4}\)
\(\Rightarrow\sqrt{a^2+ab+2b^2}+\sqrt{b^2+2c^2+bc}+\sqrt{c^2+2a^2+ca}\ge\frac{3a+5b+3b+5c+3c+5a}{4}\)
\(=2\left(a+b+c\right)\left(đpcm\right)\)
1) Áp dụng bunhiacopxki ta được \(\sqrt{\left(2a^2+b^2\right)\left(2a^2+c^2\right)}\ge\sqrt{\left(2a^2+bc\right)^2}=2a^2+bc\), tương tự với các mẫu ta được vế trái \(\le\frac{a^2}{2a^2+bc}+\frac{b^2}{2b^2+ac}+\frac{c^2}{2c^2+ab}\le1< =>\)\(1-\frac{bc}{2a^2+bc}+1-\frac{ac}{2b^2+ac}+1-\frac{ab}{2c^2+ab}\le2< =>\)
\(\frac{bc}{2a^2+bc}+\frac{ac}{2b^2+ac}+\frac{ab}{2c^2+ab}\ge1\)<=> \(\frac{b^2c^2}{2a^2bc+b^2c^2}+\frac{a^2c^2}{2b^2ac+a^2c^2}+\frac{a^2b^2}{2c^2ab+a^2b^2}\ge1\) (1)
áp dụng (x2 +y2 +z2)(m2+n2+p2) \(\ge\left(xm+yn+zp\right)^2\)
(2a2bc +b2c2 + 2b2ac+a2c2 + 2c2ab+a2b2). VT\(\ge\left(bc+ca+ab\right)^2\) <=> (ab+bc+ca)2. VT \(\ge\left(ab+bc+ca\right)^2< =>VT\ge1\) ( vậy (1) đúng)
dấu '=' khi a=b=c
Thay \(a+b+c=3\) ta được:
\(VT=\frac{1}{a\left(a+b+c\right)+bc}+\frac{1}{b\left(a+b+c\right)+ca}+\frac{1}{c\left(a+b+c\right)+ab}\)
\(=\frac{1}{a^2+ab+ac+bc}+\frac{1}{b^2+ab+bc+ca}+\frac{1}{c^2+ca+bc+ab}\)
\(=\frac{1}{a\left(a+b\right)+c\left(a+b\right)}+\frac{1}{b\left(a+b\right)+c\left(a+b\right)}+\frac{1}{c\left(a+c\right)+b\left(a+c\right)}\)
\(=\frac{1}{\left(a+b\right)\left(a+c\right)}+\frac{1}{\left(a+b\right)\left(b+c\right)}+\frac{1}{\left(a+c\right)\left(b+c\right)}\)
\(=\frac{b+c+a+c+a+b}{\left(a+b\right)\left(b+c\right)\left(a+c\right)}=\frac{2\left(a+b+c\right)}{\sqrt{\left[\left(a+b\right)\left(a+c\right)\right].\left[\left(a+b\right)\left(b+c\right)\right].\left[\left(a+c\right)\left(b+c\right)\right]}}\)
\(=\frac{6}{\sqrt{\left(3a+bc\right)\left(3b+ca\right)\left(3c+ab\right)}}=VP\) (Do \(a+b+c=3\))
=> ĐPCM.
Áp dụng bất đẳng thức Cô-si :
\(a\sqrt{3a\left(a+2b\right)}+b\sqrt{3b\left(b+2a\right)}\le a\cdot\frac{3a+a+2b}{2}+b\cdot\frac{3b+b+2a}{2}\)
\(=a\cdot\frac{4a+2b}{2}+b\cdot\frac{4b+2a}{2}\)
\(=a\left(2a+b\right)+b\left(2b+a\right)\)
\(=2a^2+2b^2+2ab\)
\(=2\left(a^2+b^2+ab\right)\le2\left(2+\frac{a^2+b^2}{2}\right)=2\left(2+\frac{2}{2}\right)=6\)
Dấu "=" xảy ra \(\Leftrightarrow a=b=1\)
p/s: có gì chiều giải nốt, giờ đi ăn cơm @@