Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(Q=\dfrac{2}{x^2+y^2}+\dfrac{3}{xy}=\dfrac{2}{x^2+y^2}+\dfrac{6}{2xy}=\dfrac{2}{x^2+y^2}+\dfrac{2}{2xy}+\dfrac{4}{2xy}\)
Áp dụng BĐT phụ: \(\dfrac{1}{a}+\dfrac{1}{b}\ge\dfrac{4}{a+b}\)
\(\Rightarrow2\left(\dfrac{1}{x^2+y^2}+\dfrac{1}{2xy}\right)\ge2\left(\dfrac{4}{x^2+2xy+y^2}\right)=2\left[\dfrac{4}{\left(x+y\right)^2}\right]=2.\dfrac{4}{4}=2\)
Dấu "=" xảy ra khi x=y=1
Áp dụng BĐT phụ: \(ab\le\dfrac{\left(a+b\right)^2}{4}\)
\(\Rightarrow xy\le\dfrac{\left(x+y\right)^2}{4}=\dfrac{2^2}{4}=1\)
Dấu"=" xảy ra khi x=y=1
\(\Rightarrow2xy\le2.1=2\)
\(\Rightarrow\dfrac{4}{2xy}\ge\dfrac{4}{2}=2\)
\(\Rightarrow Q=\dfrac{2}{x^2+y^2}+\dfrac{2}{2xy}+\dfrac{4}{2xy}=\dfrac{2}{x^2+y^2}+\dfrac{3}{xy}\ge2+2=4\)
Dấu"=" xảy ra khi x=y=1
\(2=\frac{1}{x^2}+\frac{1}{y^2}\ge\frac{2}{xy}\)
\(\Leftrightarrow xy\ge1\)
\(\Rightarrow x+y\ge2\sqrt{xy}\ge2\)
Áp dụng BĐT Cauchy-Schwarz dạng Engel ta có:
\(P=\dfrac{1}{x^2+y^2}+\dfrac{1}{2xy}\ge\dfrac{\left(1+1\right)^2}{x^2+y^2+2xy}=\dfrac{2}{\left(x+y\right)^2}=2\left(x+y=1\right)\)
Đẳng thức xảy ra khi \(x=y=\dfrac{1}{2}\)
\(A=\frac{1}{x^2+y^2}+\frac{1}{2xy}+\frac{1}{2xy}\ge\frac{4}{\left(x+y\right)^2}+\frac{1}{2xy}\\ =\frac{1}{4}+\frac{1}{2xy}\ge\frac{1}{4}+\frac{1}{8}=\frac{3}{8}\)
Dấu = xảy ra khi x=y=2
\(P=\dfrac{1}{x^2+x}+\dfrac{1}{y^2+y}+\dfrac{1}{z^2+z}\)
\(=\dfrac{1}{x\left(x+1\right)}+\dfrac{1}{y\left(y+1\right)}+\dfrac{1}{z\left(z+1\right)}\)
\(=\dfrac{1}{x}-\dfrac{1}{x+1}+\dfrac{1}{y}-\dfrac{1}{y+1}+\dfrac{1}{z}-\dfrac{1}{z+1}\)
Áp dụng BĐT \(\dfrac{1}{x+y}\le\dfrac{1}{4}\left(\dfrac{1}{x}+\dfrac{1}{y}\right)\) và BĐT Cauchy Shwarz dạng Engel, ta có:
\(P\ge\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)-\dfrac{1}{4}\left(\dfrac{1}{x}+1+\dfrac{1}{y}+1+\dfrac{1}{z}+1\right)\)
\(=\dfrac{3}{4}\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)-\dfrac{3}{4}\)
\(\ge\dfrac{3}{4}\left[\dfrac{\left(1+1+1\right)^2}{x+y+z}\right]-\dfrac{3}{4}=\dfrac{3}{4}\left(\dfrac{9}{3}-1\right)=\dfrac{3}{2}\)
Dấu "=" xảy ra khi x = y = z = 1.
Min P = 1,5 <=> x = y = z = 1.
T xài phương pháp chuẩn hóa thử, lên C3 có gặp mấy bài này chém dễ dàng, có sai thì đừng ném đá nha :vv.
Ta chứng minh BĐT sau:
\(\dfrac{1}{x^2+x}\ge-0,75x+1,25\) \(\forall x\in\left(0;1\right)\) ( Để ra cái BĐT này t dùng casio, ra cái này là ra hết bài :D )
Thật vậy: \(\dfrac{1}{x^2+x}+0,75x-1,25\ge0\)
\(\Rightarrow\dfrac{1+0,75x\left(x^2+x\right)-1,25\left(x^2+x\right)}{x^2+x}\ge0\)
\(\Rightarrow1+0,75x^3+0,75x^2-1,25x^2+1,25x\ge0\)
\(\Rightarrow0,75\left(x-1\right)^2\left(x+\dfrac{4}{3}\right)\ge0\) \(\forall x\in\left(0;1\right)\) (BĐT này luôn đúng)
Tương tự: \(\dfrac{1}{y^2+y}\ge-0,75y+1,25\)
\(\dfrac{1}{z^2+z}\ge-0,75z+1,25\)
Cộng vế theo vế các BĐT vừa chứng minh, ta được: \(P\ge-0,75\left(x+y+z\right)+1,25.3\)
\(P\ge1\)
Vậy Min P =1 khi x=y=z =1
Cho x,y là các số dương thỏa mãn \(\dfrac{1}{x^2}-\dfrac{1}{y^2}=\dfrac{1}{2}\)
Tìm GTNN của C = x+y
Đề bài sai, C không có giá trị nhỏ nhất
Nếu \(\dfrac{1}{x^2}+\dfrac{1}{y^2}=\dfrac{1}{2}\) thì có thể tìm được min của C
Dự đoán dấu "=" khi x = 2 ; y= 1
Áp dụng bđt Cô-si cho 3 số và bđt \(\frac{a^2}{m}+\frac{b^2}{n}\ge\frac{\left(a+b\right)^2}{m+n}\) ta được
\(P=2x^2+y^2+\frac{28}{x}+\frac{1}{y}\)
\(=\left(\frac{7x^2}{4}+\frac{14}{x}+\frac{14}{x}\right)+\left(\frac{y^2}{2}+\frac{1}{2y}+\frac{1}{2y}\right)+\left(\frac{x^2}{4}+\frac{y^2}{2}\right)\)
\(\ge3\sqrt[3]{\frac{7x^2.14.14}{4.x^2}}+3\sqrt[3]{\frac{y^2.1.1}{2.2y.2y}}+\frac{\left(x+y\right)^2}{4+2}\)
\(=3.\sqrt[3]{\frac{7.14.14}{4}}+\frac{3}{\sqrt[3]{2^3}}+\frac{3^2}{6}=24\)
Dấu "=" khi x = 2 ; y = 1
Bài toán easy!
\(P=\left(2x^2+8\right)+\left(y^2+1\right)+\frac{28}{x}+\frac{1}{y}-9\)
Áp dụng BĐT AM-GM,ta có:
\(P\ge8x+2y+\frac{28}{x}+\frac{1}{y}-9\)
\(=\left(7x+\frac{28}{x}\right)+\left(y+\frac{1}{y}\right)+\left(x+y\right)-9\)
\(\ge2\sqrt{7x.\frac{28}{x}}+2\sqrt{y.\frac{1}{y}}+\left(x+y\right)-9\)
\(\ge28+2+3-9=24\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}2x^2=8\\y^2=1\end{cases}}\Leftrightarrow\hept{\begin{cases}x=2\\y=1\end{cases}}\)
Vậy \(P_{min}=24\Leftrightarrow\hept{\begin{cases}x=2\\y=1\end{cases}}\)
\(P=\dfrac{x+2y}{2xy}+\dfrac{1}{x+2y}=\dfrac{x+2y}{4}+\dfrac{1}{x+2y}\)
\(P=\dfrac{x+2y}{16}+\dfrac{1}{x+2y}+\dfrac{3\left(x+2y\right)}{16}\)
\(P\ge2\sqrt{\dfrac{x+2y}{16\left(x+2y\right)}}+\dfrac{3}{16}.2\sqrt{2xy}=\dfrac{5}{4}\)
\(P_{min}=\dfrac{5}{4}\) khi \(\left(x;y\right)=\left(2;1\right)\)