Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Do \(C\in\Delta\) nên tọa độ có dạng: \(C\left(1+t;2+t\right)\Rightarrow\left\{{}\begin{matrix}\overrightarrow{AC}=\left(t+2;t\right)\\\overrightarrow{BC}=\left(t-2;t+1\right)\end{matrix}\right.\)
\(AC=BC\Rightarrow AC^2=BC^2\)
\(\Rightarrow\left(t+2\right)^2+t^2=\left(t-2\right)^2+\left(t+1\right)^2\)
\(\Rightarrow6t=1\Rightarrow t=\dfrac{1}{6}\)
\(\Rightarrow C\left(\dfrac{7}{6};\dfrac{13}{6}\right)\)
Mik đang bận nên chỉ có HD thôi ạ :
-Viết p/t đ/t d ; biểu diễn tọa độ P theo d
- Tính MN ; NP ; MP
- ADCT : \(S=\sqrt{p\left(p-a\right)\left(p-b\right)\left(p-c\right)}\) ( p = a + b + c / 2 )
GPT tìm tọa độ P
\(\overrightarrow{NM}=\left(3;3\right)\Rightarrow MN=\sqrt{3^2+3^2}=3\sqrt{2}\) và đường thẳng MN nhận (1;-1) là 1 vtpt
Phương trình MN:
\(1\left(x-2\right)-1\left(y-2\right)=0\Leftrightarrow x-y=0\)
Do P thuộc (d) nên tọa độ có dạng: \(\left(-8+2t;t\right)\)
\(\Rightarrow d\left(P;MN\right)=\dfrac{\left|-8+2t-t\right|}{\sqrt{1^2+\left(-1\right)^2}}=\dfrac{\left|t-8\right|}{\sqrt{2}}\)
\(S_{MNP}=\dfrac{1}{2}.d\left(P;MN\right).MN=18\)
\(\Leftrightarrow\dfrac{1}{2}.\dfrac{\left|t-8\right|}{\sqrt{2}}.3\sqrt{2}=18\)
\(\Rightarrow\left|t-8\right|=12\Rightarrow\left[{}\begin{matrix}t=20\\t=-4\end{matrix}\right.\) (loại \(t=20\) do P có tung độ âm)
\(\Rightarrow P\left(-16;-4\right)\Rightarrow2a-13b=20\)
1: (d): x=-2-2t và y=1+2t nên (d) có VTCP là (-2;2)=(-1;1) và đi qua B(-2;1)
=>(d') có VTPT là (-1;1)
Phương trình (d') là;
-1(x-3)+1(y-1)=0
=>-x+3+y-1=0
=>-x+y+2=0
2: (d) có VTCP là (-1;1)
=>VTPT là (1;1)
Phương trình (d) là:
1(x+2)+1(y-1)=0
=>x+y+1=0
Tọa độ H là;
x+y+1=0 và -x+y+2=0
=>x=1/2 và y=-3/2
M \(\varepsilon\Delta\)=> M ( 1+ t; 2 + t)
MA2 = (t + 2)2 + t2 = 2 t2 + 4t + 4
MB2 = (t - 2)2 + (t + 1)2 = 2t2 - 2t + 5
MA2 +MB2 = 2t2 + 4t + 4 + 2t2 - 2t + 5 = 4t2 + 2t + 9 = 4t2 + 2.2t.1/2 + 1/4 + 35/4
= ( 2t + 1/2 )2 + 35/4 >= 35/4
vậy min của MA2 + MB2 = 35/4 <=> t = -1/4 => M (3/4 ; 7/4)
#mã mã#