K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 10 2023

a: Q=M+N

\(=5x^2y+5x+3-3xy^2z+xy^2z-4x^2y+5x-5\)

\(=x^2y+10x-2-2xy^2z\)

\(P=M-N\)

\(=5x^2y+5x+3-3xy^2z-xy^2z+4x^2y-5x+5\)

\(=9x^2y+8-4xy^2z\)

H=N-M

=-(M-N)

\(=-9x^2y-8+4xy^2z\)

b: \(Q=x^2y+10x-2-2xy^2z\)

=>Q có bậc là 4

\(P=9x^2y+8-4xy^2z\)

=>P có bậc là 4

\(H=-9x^2y-8+4xy^2z\)

=>H có bậc là 4

c: Khi x=-1;y=3;z=-2 thì

\(Q=\left(-1\right)^2\cdot3+10\cdot\left(-1\right)-2-2\cdot\left(-1\right)\cdot3^2\cdot\left(-2\right)\)

\(=3-10-2+2\cdot9\cdot\left(-2\right)\)

\(=-9-36=-45\)

Khi x=-1;y=3;z=-2 thì \(P=9\cdot\left(-1\right)^2\cdot3+8-4\cdot\left(-1\right)\cdot3^2\cdot\left(-2\right)\)

\(=27+8+4\cdot9\cdot\left(-2\right)\)

\(=35-72=-37\)

H=-P

=>H=37

Bài 1: Tính nhanh giá trị của biểu thức: a) A= x^2 + 9y^2 - 6xy tại x=19 và y= 3 b) B= x^3 - 6x^2y + 12xy^2 - 8y^3 tại x= 12 và y= - 4 Bài 2: Rút gọn biểu thức: a) 3(x-y)^2 - 2(x+y)^2 - (x-y).(x+y) b) 2(2x+5)^2 - 3(4x+1).(1-4x) Bài 3: Phân tích các đa thức sau thành phân tử: a) x^2 - 9+ (x-3)^2 b) x^3 - 4x^2 + 4x - xy^2 c) x^3 - 4x^2 + 12x -27 d) 3x^2 -7x - 10 e) 5x^3 - 5x^2y - 10x^2 +10xy f) 3x^2 - 6xy + 3y^2 - 12z^2 Bài 4: Tìm x, biết: a) x.(4x^2...
Đọc tiếp

Bài 1: Tính nhanh giá trị của biểu thức:
a) A= x^2 + 9y^2 - 6xy tại x=19 và y= 3
b) B= x^3 - 6x^2y + 12xy^2 - 8y^3 tại x= 12 và y= - 4

Bài 2: Rút gọn biểu thức:
a) 3(x-y)^2 - 2(x+y)^2 - (x-y).(x+y)
b) 2(2x+5)^2 - 3(4x+1).(1-4x)

Bài 3: Phân tích các đa thức sau thành phân tử:
a) x^2 - 9+ (x-3)^2
b) x^3 - 4x^2 + 4x - xy^2
c) x^3 - 4x^2 + 12x -27
d) 3x^2 -7x - 10
e) 5x^3 - 5x^2y - 10x^2 +10xy
f) 3x^2 - 6xy + 3y^2 - 12z^2

Bài 4: Tìm x, biết:
a) x.(4x^2 - 1)=0
b) 3.(x-1)^2 - 3x.(x-5) - 2 =0
c) x^3 - x^2 - x + 1=0
d) 2x^2 - 5x -7 =0

Giúp mình với, mai mình có bài kiểm tra một tiết rồi, đây là đề cương, bạn nào tốt bụng xinh gái đẹp trai hào phóng trả lời hộ mình với ạ!!!. khổ nỗi mình ngu nhất môn toán nên không biết làm. Bạn nào biết giúp mình với đi ạ, không mai mình tạch Toán mất T_T
Cảm ơn trước

8
25 tháng 10 2017

bài 1

a, \(x^2+9y^2-6xy=\left(x-3y\right)^2\)

thay x = 19 , y = 3 vào biểu thức trên ta có

\(\left(19-3.3\right)^2=100\)

b, \(x^3-6x^2y+12xy^2-8y^3=\left(x-2y\right)^3\)

thay x = 12 và y = -4 vào biểu thức trên ta có

\(\left(12-2.\left(-4\right)\right)^3=8000\)

bài 4

a, \(x\left(4x^2-1\right)=0\)

=> \(x\left(2x-1\right)\left(2x+1\right)=0\)

=> \(\left[{}\begin{matrix}x=0\\2x-1=0\\2x+1=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{1}{2}\\x=\dfrac{-1}{2}\end{matrix}\right.\)

b, \(x^3-x^2-x+1=0\)

=> \(x^2\left(x-1\right)-\left(x-1\right)=0\)

=> \(\left(x-1\right)\left(x^2-1\right)=0\)

=>\(\left[{}\begin{matrix}x-1=0\\x^2-1=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=1\\x=-1\end{matrix}\right.\)

c, \(2x^2-5x-7=0\)

=> \(2x^2-7x+2x-7=0\)

=> \(2x\left(x+1\right)-7\left(x+1\right)=0\)

=> \(\left(x+1\right)\left(2x-7\right)=0\)

=> \(\left[{}\begin{matrix}x+1=0\\2x-7=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-1\\x=\dfrac{7}{2}\end{matrix}\right.\)

25 tháng 10 2017

Bài 2: Rút gọn biểu thức:
a) \(3\left(x-y\right)^2-2\left(x+y\right)^2-\left(x-y\right)\left(x+y\right)\)

\(=3\left(x^2-2xy+y^2\right)-2\left(x^2+2xy+y^2\right)-\left(x^2-y^2\right)\)

\(=3x^2-6xy+3y^2-2x^2+4xy+2y^2-x^2+y^2\)

\(=2y^2-2xy\)

b)\(2\left(2x+5\right)^2-3\left(4x+1\right)\left(1-4x\right)\)

\(=2\left(2x+5\right)^2-3\left(1+4x\right)\left(1-4x\right)\)

\(=2\left(4x^2+20x+25\right)-3\left(1-16x^2\right)\)

\(=8x^2+40x+50-3+48x^2\)

\(=56x^2+40x+47\)

5 tháng 9 2017

bn ... ơi...mik ...bỏ...cuộc ...hu...hu

5 tháng 9 2017

. Huhu T^T mong sẽ có ai đó giúp mình "((

19 tháng 9 2017

giúp mik nha mik đang can gâp cam on cam on cac ban truoc nhehaha

19 tháng 8 2020

a, -x - y2 + x2 - y = (x2 - y2) - (x + y)

= (x - y)(x + y) - (x + y)

= (x + y)(x - y - 1)

b, x( x + y ) - 5x - 5y = x(x + y) - 5(x + y)

= (x - 5)(x + y)
c, x2 - 5x + 5y - y2 = (x - y)(x + y) - 5(x - y)

= (x - y)(x + y - 5)
d, 5x3 - 5x2y - 10x2 + 10xy = 5x2(x - y) - 10x(x - y)

= 5x(x - y)(x - 2)
e, 27x3 - 8y3 = (3x - 2y)(9x2 + 6xy + 4y2)
f, x2 - y2 - x - y = (x - y)(x + y) - (x + y)

= (x + y)(x - y - 1)
g, x2 - y2 - 2xy + y2 = (x2 - 2xy + y2) - y2

= (x - y)2 - y2

= (x - y - y)(x - y + y) = x(x - 2y)
h, x2 - y2 + 4 - 4x = (x2 - 4x + 4) - y2

= (x - 2)2 - y2

= (x - y - 2)(x + y - 2)
i, x3 + 3x2 + 3x + 1 - 27z3 = (x + 1)3 - 27z3

= (x+1-3z)(x2+2x+1+3xz+3z+9z2)
k, 4x2 + 4x - 9y2 + 1 = (2x + 1)2 - 9y2

= (2x - 3y + 1)(2x + 3y + 1)
m, x2 - 3x + xy - 3y = x(x - 3) + y(x - 3)

= (x - 3)(x + y)

1 tháng 11 2017

a) \(P=-x^2+13x+2012\)

\(\Leftrightarrow P=-x^2+2.x.\dfrac{13}{2}-\left(\dfrac{13}{2}\right)^2+2054,25\)

\(\Leftrightarrow P=-\left[x^2-2.x.\dfrac{13}{2}+\left(\dfrac{13}{2}\right)^2\right]+2054,25\)

\(\Leftrightarrow P=-\left(x-\dfrac{13}{2}\right)^2+2054,25\)

Vậy GTLN của \(P=2054,25\) khi \(x=\dfrac{13}{2}\)

b) \(A=x^2-2x+2\)

\(\Leftrightarrow A=x^2-2x+1+1\)

\(\Leftrightarrow A=\left(x-1\right)^2+1\)

Vậy GTNN của \(A=1\) khi \(x=1\)

1 tháng 11 2017

1

a,\(x^2+5x+5xy+25y\)

\(=\left(x^2+5x\right)+\left(5xy+25y\right)\)

\(=x\left(x+5\right)+5y\left(x+5\right)\)

\(=\left(x+5y\right)\left(x+5\right)\)

b,Mình chưa làm được.

c,\(x^2-24x-25\)

\(=x^2+25x-x-25\)

\(=\left(x^2-x\right)+\left(25x-25\right)\)

\(=x\left(x-1\right)+25\left(x-1\right)\)

\(=\left(x+25\right)\left(x-1\right)\)

d,\(4x-8y\)

\(=4\left(x-2y\right)\)

e,\(x^2+2xy+y^2-16\)

\(=\left(x+y\right)^2-4^2\)

\(=\left(x+y-4\right)\left(x+y+4\right)\)

f,\(3x^2+5x-3xy-5y\)

\(=\left(3x^2-3xy\right)+\left(5x-5y\right)\)

\(=3x\left(x-y\right)+5\left(x-y\right)\)

\(=\left(3x+5\right)\left(x-y\right)\)

1 tháng 10 2020

Bạn tự tách hđt nhé! Gõ mỏi tay :v~

\(\left(y-z\right)^2+\left(z-x\right)^2+\left(x-y\right)^2=\left(y+z-2x\right)^2+\left(z+x-2y\right)^2+\left(y+z-2z\right)^2\)

\(y^2-2yz+z^2+z^2-2xz+x^2+x^2-2xy+y^2=\)\(6(z^2-yz-xz+y^2-xy+x^2)\)

\(2\left(x^2+y^2+z^2-yz-xz-xy\right)\)=\(6(z^2-yz-xz+y^2-xy+x^2)\)

\(x^2+y^2+z^2-yz-xz-xy\) = \(3(z^2-yz-xz+y^2-xy+x^2)\)

\(2x^2+2y^2+2z^2-2xy-2xz-2yz=0\)

\(\left(x-y\right)^2+\left(y-z\right)^2+\left(x-z\right)^2=0\)

\(\left(x-y\right)^2+\left(y-z\right)^2+\left(x-z\right)^2\ge0\forall x;y;z\)

Do đó \(\left\{{}\begin{matrix}x=y\\y=z\\z=x\end{matrix}\right.\)

\(x=y=z\)

1 tháng 10 2020

j lắm thế :)))

Bài 2 : ~ bài 1 ngán quá =)))

a, Có

\(5x^2+10y^2-6xy-4x-2y+3\)

\(=\left(x^2-6xy+9y^2\right)+\left(4x^2-4x+1\right)+\left(y^2-2y+1\right)+1\)

\(=\left(x-3y\right)^2+\left(2x-1\right)^2+\left(y-1\right)^2+1>0\forall x;y\)

Do đó không tồn tại x , y tm \(5x^2+10y^2-6xy-4x-2y+3=0\)

b, \(x^2+4y^2+z^2-2x-6x+6y+15=0\)

Câu này đề sai :v bài ngta không cho 2 lần x vậy đâu bạn :)))

1. Tìm các số x, y, z thỏa mãn x2 + 4y2 + 9z2 + 2x - 4y + 12z + 6 = 0 2. Cho 3 số a, b, c khác 0 thỏa mãn đẳng thức: \(\frac{a+b-c}{c}=\frac{a+c-b}{b}=\frac{b+c-a}{a}\) Tính giá trị của biểu thức: P = \(\frac{\left(a+b\right)\left(b+c\right)\left(a+c\right)}{abc}\) 3. Tìm giá trị nhỏ nhất của biểu thức: M = 5x2 + 2y2 + 4xy - 2x + 4y + 2005 4. Tìm x, y, z thỏa mãn đẳng thức: x2 + 4y2 + z2 = 2x + 12y - 4z - 14 5. Tìm giá trị nhỏ nhất...
Đọc tiếp

1. Tìm các số x, y, z thỏa mãn x2 + 4y2 + 9z2 + 2x - 4y + 12z + 6 = 0
2. Cho 3 số a, b, c khác 0 thỏa mãn đẳng thức:
\(\frac{a+b-c}{c}=\frac{a+c-b}{b}=\frac{b+c-a}{a}\)
Tính giá trị của biểu thức: P = \(\frac{\left(a+b\right)\left(b+c\right)\left(a+c\right)}{abc}\)
3. Tìm giá trị nhỏ nhất của biểu thức: M = 5x2 + 2y2 + 4xy - 2x + 4y + 2005
4. Tìm x, y, z thỏa mãn đẳng thức: x2 + 4y2 + z2 = 2x + 12y - 4z - 14
5. Tìm giá trị nhỏ nhất của biểu thức:
a) A = (x-1)(x+2)(x+3)(x+6)
b) B = x2 - 2x + y2 + 4y + 8
c) C = x2 - 4x + y2 - 8y + 6
d) D = x2 - 4xy + 5y2 + 10x - 22y + 28
6. Cho a + b = S và ab = P. Hãy biểu diễn theo S và P, các biểu thức sau đây:
a) A = a2 + b2
b) B = a3 + b3
c) C = a4 + b4
7. Chứng minh rằng:
a) a2 ( a + 1) + 2a ( a + 1 ) chia hết cho 6 với a thuộc Z
b) a ( 2a - 3 ) - 2a ( a + 1 ) chia hết cho 5 với mọi a thuộc Z
c) x2 + 2x + 2 > 0 với x thuộc Z
d) -x2 + 4x - 5 < 0 với x thuộc Z
8. Cho x2 + 2y + 1 = 0; y2 + 2z + 1 = 0 và z2 + 2x + 1 = 0
Tính A = x2000 + y2000 + z2000
9. Tìm GTNN của các biểu thức sau:
a) A = x2 + 2y2 - 2xy + 2x - 10y
b) B = x2 + 6y2 + 14z2 - 8yz + 6zx - 4xy
c) C = x2 - 2xy + 6y2 - 12x + 2y + 45
d) D = x2 - 2xy + 3y2 - 2x - 10y + 20
10. Tìm GTLN của E = -x2 + 2xy - 4y2 + 2x + 10y - 3
11. Tìm các số nguyên x, y, z thỏa mãn 10x2 + 20y2 + 24xy + 8x -24y + 51 \(\le\) 0
12. Cho 3 số x, y, z thỏa mãn điều kiện x + y + z = 0 và xy + yz + xz = 0
Hãy tính giá trị của biểu thức: S = ( x - 1 )1995 + y1996 + ( z + 1 )1997
13. Chứng minh rằng: Với mọi x thuộc Q thì giá trị của đa thức:
M = ( x + 2 )( x + 4 )( x + 6)( x + 8) + 16 là bình phương của 1 số hữu tỉ.
14. Cho x + y + z = 0, với x, y, z khác 0
Tính giá trị của biểu thức: K = \(\left(1+\frac{x}{y}\right)\left(1+\frac{y}{z}\right)\left(1+\frac{z}{x}\right)\)
15. Tìm Min, Max của biểu thức: H = \(\frac{2x^2+4x+5}{x^2+1}\)
16. Cho a, b, c là độ đài 3 cạnh của 1 tam giác.
CMR nếu ( a + b + c )2 = 3( ab + ac + bc ) thì tam giác đó là tam giác đều
17. Tìm giá trị nguyên của x, y trong đẳng thức 2x3 + xy = 7
18.Tìm x biết:
\(\frac{x+1}{2002}+\frac{x+2}{2001}+\frac{x+3}{2000}=\frac{x+4}{1999}+\frac{x+5}{1998}+\frac{x+6}{1997}\)
19. Tìm GTNN của biểu thức: P = x4 + 2x3 + 3x2 + 2x + 1

7
25 tháng 9 2019

13.

M \(=\)\(\left(x+2\right)\left(x+4\right)\left(x+6\right)\left(x+8\right)\)\(+16\)

\(=\)\(\left(x+2\right)\left(x+8\right)\left(x+4\right)\left(x+6\right)+16\)

\(=\left(x^2+10x+16\right)\left(x^2+10x+24\right)+16\)

\(=\left(x^2+10x+20-4\right)\left(x^2+10x+20+4\right)\) \(+16\)

\(=\left(x^2+10x+20\right)^2-16+16\)

\(=\left(x^2+10x+20\right)^2\) là một số chính phương

NV
24 tháng 9 2019

Nhiều quá, nhìn đã thấy ớn lạnh :(

Bạn nên chia nhỏ ra , post 1 hoặc 2 bài 1 lần thôi, đăng 1 lần 1 nùi thế này không ai dám làm đâu, bội thực chữ viết.