K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 10 2023

a: Q=M+N

\(=5x^2y+5x+3-3xy^2z+xy^2z-4x^2y+5x-5\)

\(=x^2y+10x-2-2xy^2z\)

\(P=M-N\)

\(=5x^2y+5x+3-3xy^2z-xy^2z+4x^2y-5x+5\)

\(=9x^2y+8-4xy^2z\)

H=N-M

=-(M-N)

\(=-9x^2y-8+4xy^2z\)

b: \(Q=x^2y+10x-2-2xy^2z\)

=>Q có bậc là 4

\(P=9x^2y+8-4xy^2z\)

=>P có bậc là 4

\(H=-9x^2y-8+4xy^2z\)

=>H có bậc là 4

c: Khi x=-1;y=3;z=-2 thì

\(Q=\left(-1\right)^2\cdot3+10\cdot\left(-1\right)-2-2\cdot\left(-1\right)\cdot3^2\cdot\left(-2\right)\)

\(=3-10-2+2\cdot9\cdot\left(-2\right)\)

\(=-9-36=-45\)

Khi x=-1;y=3;z=-2 thì \(P=9\cdot\left(-1\right)^2\cdot3+8-4\cdot\left(-1\right)\cdot3^2\cdot\left(-2\right)\)

\(=27+8+4\cdot9\cdot\left(-2\right)\)

\(=35-72=-37\)

H=-P

=>H=37

25 tháng 10 2017

bài 1

a, \(x^2+9y^2-6xy=\left(x-3y\right)^2\)

thay x = 19 , y = 3 vào biểu thức trên ta có

\(\left(19-3.3\right)^2=100\)

b, \(x^3-6x^2y+12xy^2-8y^3=\left(x-2y\right)^3\)

thay x = 12 và y = -4 vào biểu thức trên ta có

\(\left(12-2.\left(-4\right)\right)^3=8000\)

bài 4

a, \(x\left(4x^2-1\right)=0\)

=> \(x\left(2x-1\right)\left(2x+1\right)=0\)

=> \(\left[{}\begin{matrix}x=0\\2x-1=0\\2x+1=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{1}{2}\\x=\dfrac{-1}{2}\end{matrix}\right.\)

b, \(x^3-x^2-x+1=0\)

=> \(x^2\left(x-1\right)-\left(x-1\right)=0\)

=> \(\left(x-1\right)\left(x^2-1\right)=0\)

=>\(\left[{}\begin{matrix}x-1=0\\x^2-1=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=1\\x=-1\end{matrix}\right.\)

c, \(2x^2-5x-7=0\)

=> \(2x^2-7x+2x-7=0\)

=> \(2x\left(x+1\right)-7\left(x+1\right)=0\)

=> \(\left(x+1\right)\left(2x-7\right)=0\)

=> \(\left[{}\begin{matrix}x+1=0\\2x-7=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-1\\x=\dfrac{7}{2}\end{matrix}\right.\)

25 tháng 10 2017

Bài 2: Rút gọn biểu thức:
a) \(3\left(x-y\right)^2-2\left(x+y\right)^2-\left(x-y\right)\left(x+y\right)\)

\(=3\left(x^2-2xy+y^2\right)-2\left(x^2+2xy+y^2\right)-\left(x^2-y^2\right)\)

\(=3x^2-6xy+3y^2-2x^2+4xy+2y^2-x^2+y^2\)

\(=2y^2-2xy\)

b)\(2\left(2x+5\right)^2-3\left(4x+1\right)\left(1-4x\right)\)

\(=2\left(2x+5\right)^2-3\left(1+4x\right)\left(1-4x\right)\)

\(=2\left(4x^2+20x+25\right)-3\left(1-16x^2\right)\)

\(=8x^2+40x+50-3+48x^2\)

\(=56x^2+40x+47\)

5 tháng 9 2017

bn ... ơi...mik ...bỏ...cuộc ...hu...hu

5 tháng 9 2017

. Huhu T^T mong sẽ có ai đó giúp mình "((

19 tháng 9 2017

giúp mik nha mik đang can gâp cam on cam on cac ban truoc nhehaha

19 tháng 8 2020

a, -x - y2 + x2 - y = (x2 - y2) - (x + y)

= (x - y)(x + y) - (x + y)

= (x + y)(x - y - 1)

b, x( x + y ) - 5x - 5y = x(x + y) - 5(x + y)

= (x - 5)(x + y)
c, x2 - 5x + 5y - y2 = (x - y)(x + y) - 5(x - y)

= (x - y)(x + y - 5)
d, 5x3 - 5x2y - 10x2 + 10xy = 5x2(x - y) - 10x(x - y)

= 5x(x - y)(x - 2)
e, 27x3 - 8y3 = (3x - 2y)(9x2 + 6xy + 4y2)
f, x2 - y2 - x - y = (x - y)(x + y) - (x + y)

= (x + y)(x - y - 1)
g, x2 - y2 - 2xy + y2 = (x2 - 2xy + y2) - y2

= (x - y)2 - y2

= (x - y - y)(x - y + y) = x(x - 2y)
h, x2 - y2 + 4 - 4x = (x2 - 4x + 4) - y2

= (x - 2)2 - y2

= (x - y - 2)(x + y - 2)
i, x3 + 3x2 + 3x + 1 - 27z3 = (x + 1)3 - 27z3

= (x+1-3z)(x2+2x+1+3xz+3z+9z2)
k, 4x2 + 4x - 9y2 + 1 = (2x + 1)2 - 9y2

= (2x - 3y + 1)(2x + 3y + 1)
m, x2 - 3x + xy - 3y = x(x - 3) + y(x - 3)

= (x - 3)(x + y)

1 tháng 11 2017

a) \(P=-x^2+13x+2012\)

\(\Leftrightarrow P=-x^2+2.x.\dfrac{13}{2}-\left(\dfrac{13}{2}\right)^2+2054,25\)

\(\Leftrightarrow P=-\left[x^2-2.x.\dfrac{13}{2}+\left(\dfrac{13}{2}\right)^2\right]+2054,25\)

\(\Leftrightarrow P=-\left(x-\dfrac{13}{2}\right)^2+2054,25\)

Vậy GTLN của \(P=2054,25\) khi \(x=\dfrac{13}{2}\)

b) \(A=x^2-2x+2\)

\(\Leftrightarrow A=x^2-2x+1+1\)

\(\Leftrightarrow A=\left(x-1\right)^2+1\)

Vậy GTNN của \(A=1\) khi \(x=1\)

1 tháng 11 2017

1

a,\(x^2+5x+5xy+25y\)

\(=\left(x^2+5x\right)+\left(5xy+25y\right)\)

\(=x\left(x+5\right)+5y\left(x+5\right)\)

\(=\left(x+5y\right)\left(x+5\right)\)

b,Mình chưa làm được.

c,\(x^2-24x-25\)

\(=x^2+25x-x-25\)

\(=\left(x^2-x\right)+\left(25x-25\right)\)

\(=x\left(x-1\right)+25\left(x-1\right)\)

\(=\left(x+25\right)\left(x-1\right)\)

d,\(4x-8y\)

\(=4\left(x-2y\right)\)

e,\(x^2+2xy+y^2-16\)

\(=\left(x+y\right)^2-4^2\)

\(=\left(x+y-4\right)\left(x+y+4\right)\)

f,\(3x^2+5x-3xy-5y\)

\(=\left(3x^2-3xy\right)+\left(5x-5y\right)\)

\(=3x\left(x-y\right)+5\left(x-y\right)\)

\(=\left(3x+5\right)\left(x-y\right)\)

1 tháng 10 2020

Bạn tự tách hđt nhé! Gõ mỏi tay :v~

\(\left(y-z\right)^2+\left(z-x\right)^2+\left(x-y\right)^2=\left(y+z-2x\right)^2+\left(z+x-2y\right)^2+\left(y+z-2z\right)^2\)

\(y^2-2yz+z^2+z^2-2xz+x^2+x^2-2xy+y^2=\)\(6(z^2-yz-xz+y^2-xy+x^2)\)

\(2\left(x^2+y^2+z^2-yz-xz-xy\right)\)=\(6(z^2-yz-xz+y^2-xy+x^2)\)

\(x^2+y^2+z^2-yz-xz-xy\) = \(3(z^2-yz-xz+y^2-xy+x^2)\)

\(2x^2+2y^2+2z^2-2xy-2xz-2yz=0\)

\(\left(x-y\right)^2+\left(y-z\right)^2+\left(x-z\right)^2=0\)

\(\left(x-y\right)^2+\left(y-z\right)^2+\left(x-z\right)^2\ge0\forall x;y;z\)

Do đó \(\left\{{}\begin{matrix}x=y\\y=z\\z=x\end{matrix}\right.\)

\(x=y=z\)

1 tháng 10 2020

j lắm thế :)))

Bài 2 : ~ bài 1 ngán quá =)))

a, Có

\(5x^2+10y^2-6xy-4x-2y+3\)

\(=\left(x^2-6xy+9y^2\right)+\left(4x^2-4x+1\right)+\left(y^2-2y+1\right)+1\)

\(=\left(x-3y\right)^2+\left(2x-1\right)^2+\left(y-1\right)^2+1>0\forall x;y\)

Do đó không tồn tại x , y tm \(5x^2+10y^2-6xy-4x-2y+3=0\)

b, \(x^2+4y^2+z^2-2x-6x+6y+15=0\)

Câu này đề sai :v bài ngta không cho 2 lần x vậy đâu bạn :)))

1. Tìm các số x, y, z thỏa mãn x2 + 4y2 + 9z2 + 2x - 4y + 12z + 6 = 0 2. Cho 3 số a, b, c khác 0 thỏa mãn đẳng thức: \(\frac{a+b-c}{c}=\frac{a+c-b}{b}=\frac{b+c-a}{a}\) Tính giá trị của biểu thức: P = \(\frac{\left(a+b\right)\left(b+c\right)\left(a+c\right)}{abc}\) 3. Tìm giá trị nhỏ nhất của biểu thức: M = 5x2 + 2y2 + 4xy - 2x + 4y + 2005 4. Tìm x, y, z thỏa mãn đẳng thức: x2 + 4y2 + z2 = 2x + 12y - 4z - 14 5. Tìm giá trị nhỏ nhất...
Đọc tiếp

1. Tìm các số x, y, z thỏa mãn x2 + 4y2 + 9z2 + 2x - 4y + 12z + 6 = 0
2. Cho 3 số a, b, c khác 0 thỏa mãn đẳng thức:
\(\frac{a+b-c}{c}=\frac{a+c-b}{b}=\frac{b+c-a}{a}\)
Tính giá trị của biểu thức: P = \(\frac{\left(a+b\right)\left(b+c\right)\left(a+c\right)}{abc}\)
3. Tìm giá trị nhỏ nhất của biểu thức: M = 5x2 + 2y2 + 4xy - 2x + 4y + 2005
4. Tìm x, y, z thỏa mãn đẳng thức: x2 + 4y2 + z2 = 2x + 12y - 4z - 14
5. Tìm giá trị nhỏ nhất của biểu thức:
a) A = (x-1)(x+2)(x+3)(x+6)
b) B = x2 - 2x + y2 + 4y + 8
c) C = x2 - 4x + y2 - 8y + 6
d) D = x2 - 4xy + 5y2 + 10x - 22y + 28
6. Cho a + b = S và ab = P. Hãy biểu diễn theo S và P, các biểu thức sau đây:
a) A = a2 + b2
b) B = a3 + b3
c) C = a4 + b4
7. Chứng minh rằng:
a) a2 ( a + 1) + 2a ( a + 1 ) chia hết cho 6 với a thuộc Z
b) a ( 2a - 3 ) - 2a ( a + 1 ) chia hết cho 5 với mọi a thuộc Z
c) x2 + 2x + 2 > 0 với x thuộc Z
d) -x2 + 4x - 5 < 0 với x thuộc Z
8. Cho x2 + 2y + 1 = 0; y2 + 2z + 1 = 0 và z2 + 2x + 1 = 0
Tính A = x2000 + y2000 + z2000
9. Tìm GTNN của các biểu thức sau:
a) A = x2 + 2y2 - 2xy + 2x - 10y
b) B = x2 + 6y2 + 14z2 - 8yz + 6zx - 4xy
c) C = x2 - 2xy + 6y2 - 12x + 2y + 45
d) D = x2 - 2xy + 3y2 - 2x - 10y + 20
10. Tìm GTLN của E = -x2 + 2xy - 4y2 + 2x + 10y - 3
11. Tìm các số nguyên x, y, z thỏa mãn 10x2 + 20y2 + 24xy + 8x -24y + 51 \(\le\) 0
12. Cho 3 số x, y, z thỏa mãn điều kiện x + y + z = 0 và xy + yz + xz = 0
Hãy tính giá trị của biểu thức: S = ( x - 1 )1995 + y1996 + ( z + 1 )1997
13. Chứng minh rằng: Với mọi x thuộc Q thì giá trị của đa thức:
M = ( x + 2 )( x + 4 )( x + 6)( x + 8) + 16 là bình phương của 1 số hữu tỉ.
14. Cho x + y + z = 0, với x, y, z khác 0
Tính giá trị của biểu thức: K = \(\left(1+\frac{x}{y}\right)\left(1+\frac{y}{z}\right)\left(1+\frac{z}{x}\right)\)
15. Tìm Min, Max của biểu thức: H = \(\frac{2x^2+4x+5}{x^2+1}\)
16. Cho a, b, c là độ đài 3 cạnh của 1 tam giác.
CMR nếu ( a + b + c )2 = 3( ab + ac + bc ) thì tam giác đó là tam giác đều
17. Tìm giá trị nguyên của x, y trong đẳng thức 2x3 + xy = 7
18.Tìm x biết:
\(\frac{x+1}{2002}+\frac{x+2}{2001}+\frac{x+3}{2000}=\frac{x+4}{1999}+\frac{x+5}{1998}+\frac{x+6}{1997}\)
19. Tìm GTNN của biểu thức: P = x4 + 2x3 + 3x2 + 2x + 1

7
25 tháng 9 2019

13.

M \(=\)\(\left(x+2\right)\left(x+4\right)\left(x+6\right)\left(x+8\right)\)\(+16\)

\(=\)\(\left(x+2\right)\left(x+8\right)\left(x+4\right)\left(x+6\right)+16\)

\(=\left(x^2+10x+16\right)\left(x^2+10x+24\right)+16\)

\(=\left(x^2+10x+20-4\right)\left(x^2+10x+20+4\right)\) \(+16\)

\(=\left(x^2+10x+20\right)^2-16+16\)

\(=\left(x^2+10x+20\right)^2\) là một số chính phương

NV
24 tháng 9 2019

Nhiều quá, nhìn đã thấy ớn lạnh :(

Bạn nên chia nhỏ ra , post 1 hoặc 2 bài 1 lần thôi, đăng 1 lần 1 nùi thế này không ai dám làm đâu, bội thực chữ viết.