K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
25 tháng 10 2016
x O y A z z' N M
Giải:
a) Vì \(\widehat{xOy}+\widehat{OAz}=180^o\) và 2 góc này nằm cùng phía nên Az // Oy hay zz' // Oy ( đpcm )
b) Vì OM là tia phân giác của \(\widehat{xOy}\) nên
\(\widehat{xOM}=\frac{1}{2}.\widehat{xOy}=75^o\)
Ta có: \(\widehat{xAz}+\widehat{zAO}=180^o\)
\(\Rightarrow\widehat{xAz}+30^o=180^o\)
\(\Rightarrow\widehat{xAz}=150^o\)
Vì AN là tia phân giác của \(\widehat{xAz}\) nên
\(\widehat{xAN}=\frac{1}{2}.\widehat{xAz}=75^o\)
Ta thấy \(\widehat{xOM}=\widehat{xAN}\left(=75^o\right)\) và 2 góc này ở vị trí đồng vị nên AN // OM (đpcm)
O x y t A a B
Xet Ot và a có các khả năng sau:
1) Ot trùng với a => Ot trùng với OA (hay Ox) => Góc \(\widehat{tOx}=0^o\) => \(\widehat{xOy}=2.0=0^o\), trái với giả thiết \(0^o< \widehat{xOy}< 180^o\)
2) Ot song song với a, mà \(a\perp Ox\) => \(Ot\perp Ox\) => \(\widehat{tOx}=90^o\) => \(\widehat{xOy}=2.90=180^o\), trái với giả thiết \(0^o< \widehat{xOy}< 180^o\)
3) Hai trường hợp trên không xảy ra nên Ot cắt a.