K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 11 2017

Bạn vẽ hình rồi chụp lên đc ko

19 tháng 11 2017

bài này dễ à bạn vẽ thê đường phụ một tí là ok cmnr 

13 tháng 4 2020

Bạn tự vẽ hình nhé

a, Xét tam giác OBM và tam giác OAM có: góc BOM = AOM,OBM=OAM

Do đó : OMB=OMA

Xét tam giác OBM=tam giácOAM (c.g.c)

b,Ta có :tam giác OBM = tam giác OAM (ý a)

Do đó: OB=OA(2 cạnh tương ứng)

Nên:tam giác BOA cânt ại A 

c, Ta có :tam giác OBM= tam giác OAM (ý a)

Do đó: MB=MA (2 cạnh tương ứng)

Xét tam giác MBE = tam giác MAD (g.c.g)

Do đó MD=ME (2 cạnh tương ứng )

d, Ta có :OE=OB+BE

và:OD=OA+AD

Mà : OA=OB(CMT);BE=AD(vì tam giác MBE = tam giác MAD )

Nên:OE=OD

Gọi OM cắt DE tại I

Xét tam giác DOI=tam giác EOI (c.g.c)

Do đó :OID = OIE (2 góc tương ứng)

Mà OID + OIE= 180 độ(kề bù)

Nên : OID = OIE = 90 độ

Do đó: OM vuông góc DE 

Chỗ nào k hiểu nt hỏi mk nhé

13 tháng 4 2020

x O y A B D E 1 2 M 1 2 I 1 2 1 1 2 2

a) Xét \(\Delta OMA\)và \(\Delta OMB\)có :

\(OM\)chung

\(\widehat{O_1}=\widehat{O_2}\)( vì OM là tia phân giác của \(\widehat{xOy}\))

=> \(\Delta OMA=\Delta OMB\)( cạnh huyền - góc nhọn )

=> \(MA=MB\)( hai cạnh tương ứng )

=> \(OA=OB\)( hai cạnh tương ứng )

b) Vì \(OA=OB\)=> \(\Delta OAB\)là tam giác cân tại O

c) ( Hình mình vẽ thiếu, bạn nhớ bổ sung nhé )

Ta có : \(MA\perp Ox\)=> \(\widehat{A_1}=\widehat{A_2}=90^0\)

Tương tự : \(MB\perp Ox\)=> \(\widehat{B_1}=\widehat{B_2}=90^0\)

Xét \(\Delta MAD\)và \(\Delta MBE\)có : 

\(\widehat{A_2}=\widehat{B_2}\left(cmt\right)\)

\(MA=MB\left(gt\right)\)

\(\widehat{M_1}=\widehat{M_2}\left(dd\right)\)

=> \(\Delta MAD=\Delta MBE\left(g.c.g\right)\)

=> \(MD=ME\)( hai cạnh tương ứng )

=> \(AD=BE\)( hai cạnh tương ứng )

d) Nối D với E được đoạn thẳng DE cắt OM tại I

Ta có : \(OA+AD=OD\)

            \(OB+BE=OE\)

mà \(OA=OB\)\(AD=BE\)

=> \(OD=OE\)

Xét \(\Delta OID\)và \(\Delta OIE\)ta có :

\(OD=OE\left(cmt\right)\)

\(\widehat{O_1}=\widehat{O_2}\left(gt\right)\)

\(OM\)chung

=> \(\Delta OID\) =  \(\Delta OIE\)( c.g.c )

=> \(\widehat{I_1}=\widehat{I_2}\)( hai góc tương ứng ) ( 1 )

Ta có : \(\widehat{I_1}+\widehat{I_2}=180^0\)( 2 )

Từ ( 1 ) và ( 2 ) => \(\widehat{I_1}=\widehat{I_2}=\frac{180^0}{2}=90^0\)

=> \(OI\perp DE\)hay \(M\perp DE\)

* Ủng hộ nhé *

25 tháng 1 2019

x y O I A B

gt : \(\widehat{xOy}< 90^{\text{o}}\)\(\widehat{xOI}=\widehat{Ioy}\)\(IA\perp Ox\)\(IB\perp Oy\)

kl : .

c/m : Xét  AIO  và  BIO , có :

\(OI\) là cạnh chung

\(\widehat{xOI}=\widehat{IOy}\left(gt\right)\)

\(\Rightarrow\) AIO BIO  (ch - gn)

\(\Rightarrow IA=IB\) (2 cạnh tương ứng) (đpcm)

25 tháng 1 2019

< Em tự vẽ hình nhé! >

+, Xét ​tam giác IAO và tam giác IBO có :

              IO chung

              Góc AOI = Góc IOB ( vì OI là tia phân giác của góc xOy)

               Góc IAO = Góc IOB = 90 độ (gt)

=> Tam giác IAO = tam giác IBO ( ch-gn)

=> IA = IB ( 2 cạnh tương ứng )

b: a vuông góc với xy

b vuông góc với xy

Do đó: a//b

a: OB vuông góc với OA

a vuông góc với OA

Do đó: OB//a

mà OB vuông góc với b

nên a vuông góc với b

8 tháng 2 2018

a) Ta thấy ngay    (Cạnh huyền - góc nhọn)

b) Do 

Mà AB = AC nên AO là đường trung trực đoạn thẳng BC hay AO vuông góc BC.

c) Do OB = OC nên OB = 5cm.

Áp dụng định lý Pi-ta-go cho tam giác vuông BEO ta có:

EC = EO + OC = 8cm

Vậy thì áp dụng định lý Pi-ta-go cho tam giác vuông BEC ta có:

d) Ta thấy ngay  hay tam giác ABC là tam giác đều.