Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
\(f\left(x\right)+g\left(x\right)=6x^4-3x^2-5\)
\(f\left(x\right)-g\left(x\right)=4x^4-6x^3+7x^2+8x-9\)
Do đó: \(2\cdot f\left(x\right)=10x^4-6x^3+4x^2+8x-14\)
=>\(f\left(x\right)=5x^4-3x^3+2x^2+4x-7\)
\(g\left(x\right)=5x^4-3x^3+2x^2+4x-7-4x^4+6x^3-7x^2-8x+9\)
\(=x^4+3x^3-5x^2-4x+2\)
Bài 2:
x=100 nên x+1=101
\(f\left(x\right)=x^8-x^7\left(x+1\right)+x^6\left(x+1\right)-x^5\left(x+1\right)\)
\(=x^8-x^8-x^7+x^7+x^6-x^6-x^5\)
\(=-x^5=-100^5\)
Vì x=100 nên x+1=101
Thay 101=x+1 vào f(x) ta có:
f(x) = x8 - (x+1)x7 + (x+1)x6 -(x+1)x5 + ... + (x+1)x2 -(x+1)x +25
= x8 -x8 - x7 + x7 +x6-x6-x5 + ... + x3 + x2 - x2 -x+25
= x+25
=> f(100) = 100+25=125
Vậy f(100) = 125
Cách2:
f(100) = 1008 - 101.1007 + 101.1006-101.1005+...+101.1002-101.100+25
=1008-(100+1)1007+(100+1)1006-(100+1)1005+...+(100+1)1002-(100+1)100+25
=1008-1008-1007+1007+1006-1006+1005+...+1003+100 -1002-100+25
=-100+25=75
Vậy f(100)=75
f(x) = x8 - 101x7 + 101x6 - 101x5 + ... + 101x2 - 101x + 25
f(x) = x8 - ( 100x7 + x7 ) + ( 100x6 + x6 ) - ( 100x5 + x5 ) + ... + ( 100x2 + x2 ) - ( 100x + x ) + 25
f(x) = x7 . ( x - 100 ) - x6 . ( x - 100 ) - x5 . ( x - 100 ) - x4 . ( x - 100 ) + ... + x . ( 100 - x ) - ( x - 25 )
nên f(100) = - ( 100 - 25 ) = -75
Câu a, Gợi ý thôi nhé
\(f\left(x\right)=\frac{\left(f\left(x\right)+g\left(x\right)\right)+\left(f\left(x\right)-g\left(x\right)\right)}{2}\)
và \(g\left(x\right)=\frac{\left(f\left(x\right)+g\left(x\right)\right)-\left(f\left(x\right)-g\left(x\right)\right)}{2}\)
thay biểu thức trên vào là ra nhé
b, Chú ý: f(100) sẽ có x-100=0 nhé, nên em tách các số ra sao cho có chứa x-100 để nó bằng 0 nhé
ví dụ: \(x^8-100x^7=x^7\left(x-100\right)\), các chỗ khác tách tương tự, đề này em gõ anh nghĩ bị sai đề ròi nhé