K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 12 2023

loading... loading... 

18 tháng 12 2020

a) Ta có: AC⊥AB(AC là tiếp tuyến tại A của đường tròn (O))

BD⊥AB(BD là tiếp tuyến tại B của đường tròn (O))

Do đó: AC//BD(Định lí 1 từ vuông góc tới song song)

Xét tứ giác ACDB có AC//BD(cmt)

nên ACDB là hình thang có hai đáy là AC và BD(Định nghĩa hình thang)

Hình thang ACDB(AC//BD) có \(\widehat{CAB}=90^0\)(CA⊥AB)

nên ACDB là hình thang vuông(Định nghĩa hình thang vuông)

b) Xét (O) có 

BD là tiếp tuyến có B là tiếp điểm(gt)

MD là tiếp tuyến có M là tiếp điểm(gt)

Do đó: BD=MD(Tính chất hai tiếp tuyến cắt nhau)

⇒D nằm trên đường trung trực của BM(Tính chất đường trung trực của một đoạn thẳng)(1)

Ta có: OM=OB(=R)

nên O nằm trên đường trung trực của BM(Tính chất đường trung trực của một đoạn thẳng)(2)

Từ (1) và (2) suy ra OD là đường trung trực của MB

hay OD⊥MB

Xét (O) có 

ΔEAB nội tiếp đường tròn(Vì E,A,B(O))

AB là đường kính của (O)

Do đó: ΔEAB vuông tại E(Định lí)

⇒EB⊥EA

hay BE⊥DA

Áp dụng hệ thức lượng trong tam giác vuông vào ΔDBA vuông tại B có BE là đường cao ứng với cạnh huyền DA, ta được: 

\(DE\cdot DA=DB^2\)(1)

Ta có: BM⊥DO(cmt)

nên BN⊥DO(Vì BM cắt DO tại N)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔDOB vuông tại B có BN là đường cao ứng với cạnh huyền DO, ta được: 

\(DN\cdot DO=DB^2\)(2)

Từ (1) và (2) suy ra \(DE\cdot DA=DN\cdot DO\)(đpcm)