Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Ta có: ΔOBC cân tại O
mà OH là đường cao
nên H là trung điểm của BC và OH là phân giác của góc BOC
b: Ta có: OH là phân giác của góc BOC
=>\(\widehat{BOH}=\widehat{COH}\)
=>\(\widehat{BOA}=\widehat{COA}\)
Xét ΔOBA và ΔOCA có
OB=OC
\(\widehat{BOA}=\widehat{COA}\)
OA chung
Do đó: ΔOBA=ΔOCA
=>\(\widehat{OBA}=\widehat{OCA}\)
mà \(\widehat{OBA}=90^0\)
nên \(\widehat{OCA}=90^0\)
=>AC là tiếp tuyến của (O)
c: Xét ΔOBA vuông tại B có \(sinBAO=\dfrac{OB}{OA}=\dfrac{1}{2}\)
nên \(\widehat{BAO}=30^0\)
Ta có: ΔOBA=ΔOCA
=>\(\widehat{BAO}=\widehat{CAO}\)
mà tia AO nằm giữa hai tia AB và AC
nên \(\widehat{BAC}=2\cdot\widehat{BAO}=60^0\)
Ta có: ΔOBA=ΔOCA
=>AB=AC
Xét ΔABC có AB=AC và \(\widehat{BAC}=60^0\)
nên ΔABC đều
a: BA là tiếp tuyến của (O) có B là tiếp điểm
=>OB\(\perp\)BA tại B
=>ΔOBA vuông tại B
ΔBOA vuông tại B
=>\(BO^2+BA^2=OA^2\)
=>\(BA^2=\left(2R\right)^2-R^2=3R^2\)
=>\(BA=R\sqrt{3}\)
b: ΔOBC cân tại O
mà OA là đường cao
nên OA là tia phân giác của \(\widehat{BOC}\)
Xét ΔOBA và ΔOCA có
OB=OC
\(\widehat{BOA}=\widehat{COA}\)
OA chung
Do đó: ΔOBA=ΔOCA
=>\(\widehat{OCA}=\widehat{OBA}=90^0\)
=>AC là tiếp tuyến của (O)
c: Xét ΔABO vuông tại B có \(sinBAO=\dfrac{BO}{OA}=\dfrac{1}{2}\)
nên \(\widehat{BAO}=30^0\)
ΔOBA=ΔOCA
=>\(\widehat{BAO}=\widehat{CAO}\) và AB=AC
=>\(\widehat{BAC}=2\cdot\widehat{BAO}=2\cdot30^0=60^0\)
Xét ΔABC có AB=AC và \(\widehat{BAC}=60^0\)
nên ΔABC đều
a: Xét (O) có
OH là một phần đường kính
BC là dây
OH⊥BC tại H
Do đó:H là trung điểm của BC
Xét ΔABC có
AH là đường cao
AH là đường trung tuyến
Do đó: ΔABC cân tại A
Xét ΔOBA và ΔOCA có
OB=OC
BA=CA
OA chung
Do đó: ΔOBA=ΔOCA
Suy ra: \(\widehat{OBA}=\widehat{OCA}=90^0\)
hay AC là tiếp tuyến
b: Xét ΔOBA vuông tại B có
\(\sin BAO=\dfrac{OB}{OA}=\dfrac{1}{2}\)
=>\(\widehat{BAO}=30^0\)
hay \(\widehat{BAC}=60^0\)
mà ΔABC cân tại A
nên ΔABC đều
a) Xét tam giác OAH và tam giác OCH, có:
OA=OC=R ; OH chung ; \(\widehat{OHA}=\widehat{OHC}=90^{O^{ }}\)
=> Tam giác OAH = tam giác OCH (ch-cgv) => AH=HC (2 cạnh tương ứng)
<=> H là trung điểm cạnh AC (đpcm)
b) Ta có: AC vuông góc OM tại H, AH=CH nên OM là đường trung trực của AH => MA=MC
Xét tam giác OAM và tam giác OCM, có: OA=OC=R ; MA=MC ; OM chung
=> tam giác OAM = tam giác OCM(c.c.c) => \(\widehat{OAM}=\widehat{OCM}=90^o\)
<=> MC là tiếp tuyến của (O) (đpcm)
O A B H C Q D E
a, Vì \(\hept{\begin{cases}OB=OC\\OA\perp BC\end{cases}}\)
=> OA là đường trung trực BC
Mà OA cắt BC tại H
=> H là trung điểm BC
b, Vì AB là tiếp tuyến (O)
=> \(\widehat{ABO}=90^o\)
Do OA là trung trực của BC
=> AB = AC
Xét \(\Delta\)ABO và \(\Delta\)ACO có :
AB = AC (cmt)
OB = OC (=R)
AO chung
=> \(\Delta ABO=\Delta ACO\left(c.c.c\right)\)
\(\Rightarrow\widehat{ACO}=\widehat{ABO}=90^o\)
\(\Rightarrow AC\perp CO\)
=> AC là tiếp tuyến (O)
c, Xét tam giác OBA vuông tại B có
\(sin\widehat{BAO}=\frac{BO}{OA}=\frac{R}{2R}=\frac{1}{2}\)
\(\Rightarrow\widehat{BAO}=30^o\)
Vì AB , AC là 2 tiếp tuyến (O)
=> AO là p.g góc BAC
\(\Rightarrow\widehat{BAC}=2\widehat{BAO}=2.30^o=60^o\)
Vì AB = AC (Cmt)
=> \(\Delta\)ABC cân tại A
Mà ^BAC = 60o
=> \(\Delta\)ABC đều
Còn câu d, mình chưa nghĩ ra :(