cho đường tròn (O,R) và một điểm A nằm ngoài đường tròn (O). Vẽ tiếp thuyến AB của đường...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Ta có: ΔOBC cân tại O

mà OH là đường cao

nên H là trung điểm của BC và OH là phân giác của góc BOC

b: Ta có: OH là phân giác của góc BOC

=>\(\widehat{BOH}=\widehat{COH}\)

=>\(\widehat{BOA}=\widehat{COA}\)

Xét ΔOBA và ΔOCA có

OB=OC

\(\widehat{BOA}=\widehat{COA}\)

OA chung

Do đó: ΔOBA=ΔOCA

=>\(\widehat{OBA}=\widehat{OCA}\)

mà \(\widehat{OBA}=90^0\)

nên \(\widehat{OCA}=90^0\)

=>AC là tiếp tuyến của (O)

c: Xét ΔOBA vuông tại B có \(sinBAO=\dfrac{OB}{OA}=\dfrac{1}{2}\)

nên \(\widehat{BAO}=30^0\)

Ta có: ΔOBA=ΔOCA

=>\(\widehat{BAO}=\widehat{CAO}\)

mà tia AO nằm giữa hai tia AB và AC

nên \(\widehat{BAC}=2\cdot\widehat{BAO}=60^0\)

Ta có: ΔOBA=ΔOCA

=>AB=AC

Xét ΔABC có AB=AC và \(\widehat{BAC}=60^0\)

nên ΔABC đều

 

7 tháng 1 2024

ý d đâu bạn :(

20 tháng 12 2018

O A B H C Q D E

a, Vì \(\hept{\begin{cases}OB=OC\\OA\perp BC\end{cases}}\)

=> OA là đường trung trực BC

Mà OA cắt BC tại H

=> H là trung điểm BC

b, Vì AB là tiếp tuyến (O)

=> \(\widehat{ABO}=90^o\) 

Do OA là trung trực của BC

=> AB = AC
Xét \(\Delta\)ABO và \(\Delta\)ACO có :

AB = AC (cmt)

OB = OC (=R)

AO chung

=> \(\Delta ABO=\Delta ACO\left(c.c.c\right)\)

\(\Rightarrow\widehat{ACO}=\widehat{ABO}=90^o\)

\(\Rightarrow AC\perp CO\)

=> AC là tiếp tuyến (O) 

c, Xét tam giác OBA vuông tại B có
\(sin\widehat{BAO}=\frac{BO}{OA}=\frac{R}{2R}=\frac{1}{2}\)

\(\Rightarrow\widehat{BAO}=30^o\)

Vì AB , AC là 2 tiếp tuyến (O)

=> AO là p.g góc BAC

\(\Rightarrow\widehat{BAC}=2\widehat{BAO}=2.30^o=60^o\)
Vì AB = AC (Cmt)

=> \(\Delta\)ABC cân tại A

Mà ^BAC = 60o

=> \(\Delta\)ABC đều

Còn câu d, mình chưa nghĩ ra :(

18 tháng 9 2019

Bạn lm đc bài này chưa

Giúp mk với

17 tháng 11 2023

a: BA là tiếp tuyến của (O) có B là tiếp điểm

=>OB\(\perp\)BA tại B

=>ΔOBA vuông tại B

ΔBOA vuông tại B

=>\(BO^2+BA^2=OA^2\)

=>\(BA^2=\left(2R\right)^2-R^2=3R^2\)

=>\(BA=R\sqrt{3}\)

b: ΔOBC cân tại O

mà OA là đường cao

nên OA là tia phân giác của \(\widehat{BOC}\)

Xét ΔOBA và ΔOCA có

OB=OC

\(\widehat{BOA}=\widehat{COA}\)

OA chung

Do đó: ΔOBA=ΔOCA

=>\(\widehat{OCA}=\widehat{OBA}=90^0\)

=>AC là tiếp tuyến của (O)

c: Xét ΔABO vuông tại B có \(sinBAO=\dfrac{BO}{OA}=\dfrac{1}{2}\)

nên \(\widehat{BAO}=30^0\)

ΔOBA=ΔOCA

=>\(\widehat{BAO}=\widehat{CAO}\) và AB=AC

=>\(\widehat{BAC}=2\cdot\widehat{BAO}=2\cdot30^0=60^0\)

Xét ΔABC có AB=AC và \(\widehat{BAC}=60^0\)

nên ΔABC đều

a: Xét (O) có 

OH là một phần đường kính

BC là dây

OH⊥BC tại H

Do đó:H là trung điểm của BC

Xét ΔABC có 

AH là đường cao

AH là đường trung tuyến

Do đó: ΔABC cân tại A

Xét ΔOBA và ΔOCA có 

OB=OC

BA=CA

OA chung

Do đó: ΔOBA=ΔOCA

Suy ra: \(\widehat{OBA}=\widehat{OCA}=90^0\)

hay AC là tiếp tuyến

b: Xét ΔOBA vuông tại B có

\(\sin BAO=\dfrac{OB}{OA}=\dfrac{1}{2}\)

=>\(\widehat{BAO}=30^0\)

hay \(\widehat{BAC}=60^0\)

mà ΔABC cân tại A

nên ΔABC đều

Giải giúp mình các bài này với ạ!1) Từ điểm A nằm ngoài đường tròn tâm O, vẽ tiếp tuyến AB (B là tiếp điểm). Lấy điểm C thuộc đường tròn tâm (O) khác điểm B sao cho AB = ACa. CM : Tam giác OAB = tam giác OACb. CM : AC là tiếp tuyến của đường tròn tâm Oc. Gọi I là giao điểm của OA và BC. Tính AB biết bán kính (R) = 5cm, BC = 8cm2) Lấy 2 điểm A và B thuộc đường tròn tâm O (3 điểm A, B, O không...
Đọc tiếp

Giải giúp mình các bài này với ạ!

1) Từ điểm A nằm ngoài đường tròn tâm O, vẽ tiếp tuyến AB (B là tiếp điểm). Lấy điểm C thuộc đường tròn tâm (O) khác điểm B sao cho AB = AC
a. CM : Tam giác OAB = tam giác OAC
b. CM : AC là tiếp tuyến của đường tròn tâm O
c. Gọi I là giao điểm của OA và BC. Tính AB biết bán kính (R) = 5cm, BC = 8cm

2) Lấy 2 điểm A và B thuộc đường tròn tâm O (3 điểm A, B, O không thẳng hàng). Tiếp tuyến của O tại A cắt tia phân giác của góc AOB tại C.
a. So sánh tam giác OAC và tam giác OBC.
b. CM : BC là tiếp tuyến của đường tròn tâm O

3) Cho đường tròn tâm O, bán kính R. Lấy điểm A cách O một khoảng = 2R. Từ A vẽ 2 tiếp tuyến AB, AC (B,C là tiếp điểm). OA cắt đường tròn tâm O tại I. Đường thẳng qua O và vuông góc với OB cắt AC tại K.
a. CM : OK // AB
b. CM : tam giác OAK là tam giác cân
c. CM : KI là tiếp tuyến của đường tròn tâm O.

0
16 tháng 4 2020

a) Xét tam giác OAH và tam giác OCH, có:

   OA=OC=R ;  OH chung  ; \(\widehat{OHA}=\widehat{OHC}=90^{O^{ }}\)

=> Tam giác OAH = tam giác OCH (ch-cgv)  => AH=HC (2 cạnh tương ứng)

<=> H là trung điểm cạnh AC (đpcm)

b)  Ta có: AC vuông góc OM tại H, AH=CH nên OM là đường trung trực của AH => MA=MC

      Xét tam giác OAM và tam giác OCM, có:  OA=OC=R ;  MA=MC ; OM chung

=> tam giác OAM = tam giác OCM(c.c.c) => \(\widehat{OAM}=\widehat{OCM}=90^o\)

<=> MC là tiếp tuyến của (O)  (đpcm)