Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
O M B A C H N
G/s N thuộc đoạn thẳng AB
a) Ta có AC, AB là tiêp tuyến (O)
=> AC=AB=R
Xét tứ giác ABCO có:
AC=AB=BO=CO=R
=> ABCO là hình thoi
mặt khác \(\widehat{ABO}=90^o\)
=> ABCO là hình vuông
=> A,B,C,O cùng thuộc một đường tròn
Tứ giác BHAC nội tiếp vì \(\widehat{BHC}=\widehat{BAC}=\left(90^o\right)\)
=> A,B,C,H cùng thuộc một đường tròn
=> O, B, A, C, H cùng thuộc một đường tròn
b) \(AN.OM=\left(AB-BN\right)\left(MB+BO\right)=AB.BO-BN.BO+MB.\left(AB-BN\right)\)
\(=R^2-BN.R+MB.AN\)(1)
Ta có:
AC//MB => \(\frac{AN}{BN}=\frac{AC}{MB}\Rightarrow AN.BM=AC.BN\Rightarrow AN.BM=R.BN\)(2)
(1), (2) => AN. OM=R^2
c) Đặt AN =x
=> BN=AB-BN=R-x
và MO=\(\frac{R^2}{AN}=\frac{R^2}{x}\Rightarrow BM=\frac{R^2}{x}-R\)
Diện tích tam giác BMH =\(\frac{1}{2}\left(R-x\right)\left(\frac{R^2}{x}-R\right)=\frac{9R^2}{4}\)
<=> \(\frac{\left(R-x\right)^2}{x}=\frac{9R}{2}\)
<=> \(R^2-\frac{13}{2}Rx+x^2=0\)
<=> \(\left(x-\frac{13}{4}R\right)^2=\frac{153}{16}R^2\Leftrightarrow\orbr{\begin{cases}x=\frac{3\sqrt{17}+13}{4}R\left(loai\right)\\x=\frac{-3\sqrt{17}+13}{4}R\left(tm\right)\end{cases}}\)
Tìm đc AN => tìm đc OM
TH M thuộc đoạn thẳng BO tương tự
bạn nhập câu hỏi vào google sẽ có đáp án ngay