Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét (O)co
AB,AC là các tiếp tuyến
nên AB=AC
mà OB=OC
nên OA là trung trực của BC
=>OA vuông góc với BC
b: Xét ΔOBA vuông tại B có BD là đường cao
nên BD^2=OD*DA
c: ΔOEF cân tại O
mà OG là đường trung tuyến
nên OG vuông góc với EF
Xét ΔOGA vuông tại G và ΔODH vuông tại D có
góc DOH chung
Do đó: ΔOGA đồng dạng với ΔODH
=>OG/OD=OA/OH
=>OG*OH=OD*OA
a: Xét (O) có
AB,AC là các tiếp tuyến
Do đó: AB=AC
=>A nằm trên đường trung trực của BC(1)
Ta có: OB=OC
=>O nằm trên đường trung trực của BC(2)
Từ (1) và (2) suy ra OA là đường trung trực của BC
b: OA là đường trung trực của BC
=>OA\(\perp\)BC tại D và D là trung điểm của BC
Xét ΔBOA vuông tại B có BD là đường cao
nên \(OD\cdot DA=BD^2\)
c: Sửa đề: \(OD\cdot OA=OG\cdot OH\)
Ta có: ΔOEF cân tại O
mà OG là đường trung tuyến
nên OG\(\perp\)EF tại G
Xét ΔOGA vuông tại G và ΔODH vuông tại D có
\(\widehat{GOA}\) chung
Do đó: ΔOGA đồng dạng với ΔODH
=>\(\dfrac{OG}{OD}=\dfrac{OA}{OH}\)
=>\(OG\cdot OH=OA\cdot OD\)
d: Xét ΔBOA vuông tại B có BD là đường cao
nên \(OD\cdot OA=OB^2=OE^2\)
=>\(OG\cdot OH=OE^2\)
=>\(\dfrac{OG}{OE}=\dfrac{OE}{OH}\)
Xét ΔOGE và ΔOEH có
\(\dfrac{OG}{OE}=\dfrac{OE}{OH}\)
\(\widehat{GOE}\) chung
Do đó: ΔOGE đồng dạng với ΔOEH
=>\(\widehat{OGE}=\widehat{OEH}=90^0\)
=>EH là tiếp tuyến của (O)