Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét (O) có
AB,AC là các tiếp tuyến
Do đó: AB=AC
=>ΔABC cân tại A
b: Ta có: AB=AC
=>A nằm trên đường trung trực của BC(1)
Ta có: OB=OC
=>O nằm trên đường trung trực của BC(2)
Từ (1) và (2) suy ra AO là đường trung trực của BC
=>AO\(\perp\)BC tại I và I là trung điểm của BC
c: Xét ΔOBA vuông tại B có \(BO^2+BA^2=OA^2\)
=>\(BA^2+3^2=5^2\)
=>\(BA^2=25-9=16\)
=>\(BA=\sqrt{16}=4\left(cm\right)\)
Xét ΔBOA vuông tại B có BI là đường cao
nên \(BI\cdot OA=BO\cdot BA\)
=>\(BI\cdot5=3\cdot4=12\)
=>BI=12/5=2,4(cm)
d: Ta có: ΔABI vuông tại I
=>\(IB^2+AI^2=AB^2\)
=>\(IB^2=AB^2-AI^2\left(3\right)\)
Ta có: ΔOIC vuông tại I
=>\(OC^2=OI^2+CI^2\)
=>\(CI^2=OC^2-OI^2\left(4\right)\)
I là trung điểm của BC
=>IB=IC(5)
Từ (3),(4),(5) suy ra \(AB^2-AI^2=OC^2-OI^2\)
=>\(AB^2-OC^2=AI^2-OI^2\)
a: Xét (O) có
AB,AC là tiếp tuyến
nên AB=AC
=>ΔABC cân tại A
b: OB=OC
AB=AC
Do đó: AO là trung trực của BC
=>AO vuông góc với BC
O A B C H D I K E F
b) Ta thấy (O) giao (I) tại 2 điểm B và D => BD vuông góc OI (tại K) => ^OKB=900.
Xét đường tròn (I) đường kính AB có H thuộc cung AB => AH vuông góc HB hay AH vuông góc BC (1)
AB và AC là 2 tiếp tuyến của (O) => \(\Delta\)ABC cân tại A. Mà AO là phân giác ^BAC
=> AO vuông góc BC (2)
Từ (1) và (2) => A;H;O thẳng hàng => ^OHB=900.
Xét tứ giác BOHK: ^OKB=^OHB=900 => Tứ giác BOHK nội tiếp đường tròn đường kính OB
=> ^OKH = ^OBH. Lại có ^OBH=^OAB (Cùng phụ ^HBA) => ^OKH = ^OAB
Hay ^OKH = ^HAI. Mà ^OKH + ^KHI = 1800 nên ^HAI + ^KHI = 1800
=> Tứ giác AIKH nội tiếp đường tròn (đpcm).
b) Dễ thấy OI là trung trực của BD và OI cắt BD tại K => K là trung điểm của BD
\(\Delta\)ABC cân đỉnh A có đường phân giác AH => H là trung điểm BC
Từ đó suy ra HK là đường trung bình của \(\Delta\)BDC
=> HK//CD => ^HKD + ^CDK = 1800 (3). Đồng thời \(\frac{HK}{CD}=\frac{1}{2}\)
Tương tự KI là đường trg bình của \(\Delta\)BAD => KI//AD => ^DKI + ^ADK = 1800 (4) Và \(\frac{IK}{AD}=\frac{1}{2}\)
Cộng (3) với (4) => ^KHD + ^KDI + ^CDK + ^ ADK = 3600
<=> ^HKI = 3600 - (^CDK + ^ADK) => ^HKI = ^CDA.
Xét \(\Delta\)HKI và \(\Delta\)CDA: ^HKI=^CDA; \(\frac{HK}{CD}=\frac{IK}{AD}=\frac{1}{2}\)=> \(\Delta\)HKI ~ \(\Delta\)CDA (c.g.c)
=> ^HIK = ^CAD. Mặt khác: ^CAD = ^DBE (Cùng chắn cung DE) => ^HIK=^DBE.
Mà tứ giác AIKH nội tiếp đường tròn => ^HIK=^HAK = >^DBE=^HAK hay ^KBF=^FAK
=> Tứ giác BKFA nội tiếp đường tròn => Đường tròn ngoại tiếp tam giác ABF đi qua điểm K (đpcm).
Giải thích các bước giải:
a/ Chứng minh: OA vuông góc MN.
Áp dụng tính chất 2 tiếp tuyến cắt nhau ta có AM=AN⇒AAM=AN⇒A thuộc trung trực của MN.
Lại có OM=ON=R⇒OOM=ON=R⇒O thuộc trung trực của MN
⇒OA⇒OA là trung trực của MN.
⇒OA⊥MN⇒OA⊥MN (1).
b/ Vẽ đường kính NOC. Chứng minh rằng: MC//AO.
Xét tam giác MNC có: MO=OC=ON=R⇒MC=12NCMO=OC=ON=R⇒MC=12NC
⇒ΔMNC⇒ΔMNC vuông tại M (Định lí đường trung tuyến)
⇒MN⊥MC⇒MN⊥MC (2).
Từ (1) và (2) => MC // AO.
c/ Tính độ dài các cạnh của tam giác AMN biết OM = 3 cm, OA = 5 cm.
Áp dụng định lí Pytago trong tam giác vuông OAM có:
AM2=OA2−OM2AM2=52−32=16AM=4(cm)=ANAM2=OA2−OM2AM2=52−32=16AM=4(cm)=AN
Gọi H là giao điểm của MN và OA.
⇒MN⊥AO⇒MN⊥AO tại H.
Áp dụng hệ thức lượng trong tam giác vuông OAM, đường cao MH có:
OM2=OH.OA⇒32=OH.5⇒OH=95(cm)⇒AH=OA−OH=165OM2=OH.OA⇒32=OH.5⇒OH=95(cm)⇒AH=OA−OH=165
⇒MH2=OH.AH=95.165⇒MH=125(cm)⇒MH2=OH.AH=95.165⇒MH=125(cm)
OA là trung trực của MN (cmt) ⇒H⇒H là trung điểm của MN
⇒MN=2MH=245(cm)⇒MN=2MH=245(cm).
a) Tam giác MAN cân tại A có OA là tia phân giác nên nó cũng trùng với đường cao. Vì vậy OA⊥MN.
b) Do AM, AN là hai tiếp tuyến cùng xuất phát từ một điểm nằm ngoài đường tròn nên AO là phân giác góc ^MAN và I là điểm chính giữa của cung MN. Từ đó ta có:
.
⇒ IM là phân giác góc ^NMA.
⇒ I là tâm đường tròn nội tiếp tam giác MNA.
c) Nếu tứ giác OMIN là hình thoi thì OM=ON=MI=IN=R.
Suy ra các tam giác OMI, ONI là tam giác đều. Vì vậy ^MON=^MOA+^AON=60o+60o=120o.
Suy ra ^MAN=180o−^MON=60o.
Ngược lại giả sử ^MAN=60o. Suy ra ^MON=180o−^MAN=120o.
Có OA là tia phân giác của góc MON nên ^MOA=^AON=120o:2=60o.
Suy ra các tam giác MOA, AON là tam giác đều hay tứ giác OMIN là hình thoi.
Vậy ^MAN=60o thì tứ giác OMIN là hình thoi.
a) OB=OC (=R) VÀ AB=AC(/c 2 tt cắt nhau)\(\Rightarrow\)OA LÀ ĐƯỜNG TRUNG TRỤC CỦA BC. b) \(BD\perp AB\)(t/c tt) và BE \(\perp AC\)(A \(\varepsilon\left(O\right)\)đường kính BC ). Aps dụng hệ thúc lượng ta có AE*AC=AB\(^2\)=AC\(^2\).
c) c/m OD\(^2=OB^2=OH\cdot OA\)và OH*OA=OK*OF ( \(\Delta OAK\omega\Delta OFH\left(g-g\right)\))\(\Rightarrow\frac{OD}{OF}=\frac{OK}{OD}\)mà góc FOD chung\(\Rightarrow\Delta OKD\omega\Delta ODF\left(c-g-c\right)\Rightarrow\widehat{ODF}=\widehat{OKD}=90\Rightarrow OD\perp DF\Rightarrowđpcm\)
a: Xét (O) có
AB,AC là các tiếp tuyến
Do đó: AB=AC
=>A nằm trên đường trung trực của BC(1)
ta có: OB=OC
=>O nằm trên đường trung trực của BC(2)
Từ (1),(2) suy ra OA là đường trung trực của BC
=>OA\(\perp\)BC tại H và H là trung điểm của BC
Xét ΔOBA vuông tại B có BH là đường cao
nên \(OH\cdot OA=OB^2=R^2\)
b: Ta có: \(\widehat{ABI}+\widehat{OBI}=\widehat{OBA}=90^0\)
\(\widehat{HBI}+\widehat{OIB}=90^0\)(ΔHBI vuông tại H)
mà \(\widehat{OBI}=\widehat{OIB}\)
nên \(\widehat{ABI}=\widehat{HBI}=\widehat{CBI}\)
=>BI là phân giác của góc ABC
Xét (O) có
AB,AC là các tiếp tuyến
Do đó: AO là phân giác của góc BAC
Xét ΔBAC có
AH,BI là các đường phân giác
AH cắt BI tại I
Do đó: I là tâm đường tròn nội tiếp ΔBAC
a, Để chứng minh \(OH \times OA = \pi^2\), chúng ta có thể sử dụng định lí thứ ba của đường tròn và định lí Euclid về tiếp tuyến và tiếp tuyến ngoại tiếp.
Gọi \(R\) là bán kính của đường tròn, \(O\) là tâm của đường tròn, \(A\) là điểm nằm ngoài đường tròn, \(B\) và \(C\) là các điểm tiếp tuyến từ \(A\) đến đường tròn. \(H\) là giao điểm giữa \(OA\) và \(BC\).
Theo định lí thứ ba của đường tròn, ta có \(OH\) là đoạn trung bình của \(OA\) trong tam giác \(OAB\). Điều này có nghĩa là \(OH\) là trung bình hòa của các phần bằng nhau \(OA\) và \(OB\).
\(OA = OB = R\) (bán kính của đường tròn).
\(OH = \frac{OA + OB}{2} = \frac{2R}{2} = R\).
Vậy, \(OH = R\).
Để chứng minh \(OH \times OA = \pi^2\), ta có \(OH \times OA = R \times R = R^2\).
Nhưng theo định nghĩa, \(R\) là bán kính của đường tròn, nên \(R^2\) chính là \(\pi^2\) (bán kính mũ hai). Vì vậy, \(OH \times OA = \pi^2\).
b, Để chứng minh \(I\) là tâm của đường tròn nội tiếp tam giác \(ABC\), chúng ta có thể sử dụng các định lí về tiếp tuyến và tiếp tuyến ngoại tiếp.
Gọi \(I\) là giao điểm của \(OA\) với đường tròn. Khi đó, theo định lí về tiếp tuyến ngoại tiếp, \(OA\) vuông góc với \(AB\) tại \(B\) và \(OA\) vuông góc với \(AC\) tại \(C\).
Vì OA là đường trung trực của BC (do H là giao điểm giữa OA và BC, nên OH cũng là đường trung trực của BC.)
Nếu I là tâm của đường tròn nội tiếp tam giác ABC, thì OI cũng là đường trung trực của BC
Do đó, OHvà OI là cùng một đường trung trực của BC, nên OH = OI.
Vậy, I là tâm của đường tròn nội tiếp tam giác ABC.