Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét tam giác OKB có:
OI2=IK x IB
mà IB=IC (OI là đường trung trực)
=>OI2=IK x IC (1)
Xét tam giác OAB có:
BI2=OI x IA (2)
Xét tam giác vuông OBI có:
OB2=BI2+OI2=R (3)
Từ (1) và (2) và (3) =>IK x IC+OI x IA=OB2=R2 (CMX)
a) Ta có: AB = AC (tính chất của hai tiếp tuyến cắt nhau). Nên ΔABC cân tại A.
Lại có AO là tia phân giác của góc A nên AO ⊥ BC. (trong tam giác cân, đường phân giác cũng là đường cao)
b) Gọi I là giao điểm của AO và BC. Suy ra BI = IC (đường kính vuông góc với một dây).
Xét ΔCBD có :
CI = IB
CO = OD (bán kính)
⇒ BD // HO (HO là đường trung bình của BCD) ⇒ BD // AO.
c) Theo định lí Pitago trong tam giác vuông OAC:
A C 2 = O A 2 – O C 2 = 4 2 – 2 2 = 12
=> AC = √12 = 2√3 (cm)
Do đó AB = BC = AC = 2√3 (cm).
a: Xét (O) có
AB là tiếp tuyến
AC là tiếp tuyến
Do đó:AB=AC
hay A nằm trên đường trung trực của BC(1)
Ta có: OB=OC
nên O nằm trên đường trung trực của BC(2)
từ (1) và (2) suy ra OA\(\perp\)BC(3)
b: Xét (O) có
ΔDBC nội tiếp
DC là đường kính
Do đó: ΔDBC vuông tại B
=>BC\(\perp\)BD(4)
Từ (3) và (4) suy ra BD//OA