K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 3 2021

PT đường tròn (x - 3)2 + (y + 1)2 = 4

Vậy đường tròn (C) có tâm I (3 ; -1) và bán kính bằng 2

 \(\overrightarrow{IA}=\left(-2;0\right)\)⇒ IA = 2 ⇒ A thuộc đường tròn

\(\overrightarrow{IB}=\left(-2;4\right)\) ⇒ IB > 2 ⇒ B nằm ngoài đường tròn

16 tháng 3 2021

CHI THAY cac toa do diem vao la xong

 

20 tháng 5 2017

a) \(\left(C\right)\) có tâm \(I\left(3;-1\right)\) và có bán kính \(R=2\), ta có :

\(IA=\sqrt{\left(3-1\right)^2+\left(-1-3\right)^2}=2\sqrt{5}\)

\(IA>R\), vậy A nằm ngoài (C)

b) \(\Delta_1:3x+4y-15=0;\Delta_2:x-1=0\)

20 tháng 5 2017

Phương pháp tọa độ trong mặt phẳng

18 tháng 4 2021

a, Đường tròn cần tìm có tâm \(I=\left(-\dfrac{1}{2};\dfrac{3}{2}\right)\), bán kính \(R=\dfrac{\sqrt{2}}{2}\)

Phương trình đường tròn: \(\left(x+\dfrac{1}{2}\right)^2+\left(y-\dfrac{3}{2}\right)^2=\dfrac{1}{2}\)

b, (C) có tâm \(I=\left(1;2\right)\), bán kính \(R=\sqrt{2}\)

Giao điểm của (C) và trục tung có tọa độ là nghiệm hệ:

\(\left\{{}\begin{matrix}x^2+y^2-2x-4y+3=0\\x=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}y^2-4y+3=0\\x=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}y=3\\x=0\end{matrix}\right.\) hoặc \(\left\{{}\begin{matrix}y=1\\x=0\end{matrix}\right.\)

\(\Rightarrow\) Giao điểm: \(M=\left(0;3\right);N=\left(0;1\right)\)

Phương trình tiếp tuyến tại M có dạng: \(\Delta_1:ax+by-3b=0\left(a^2+b^2\ne0\right)\)

Ta có: \(d\left(I;\Delta_1\right)=\dfrac{\left|a+2b-3b\right|}{\sqrt{a^2+b^2}}=\sqrt{2}\)

\(\Leftrightarrow a^2+b^2-2ab=2a^2+2b^2\)

\(\Leftrightarrow\left(a+b\right)^2=0\)

\(\Leftrightarrow a=-b\)

\(\Rightarrow\Delta_1:x-y+3=0\)

Tương tự ta tìm được tiếp tuyến tại N: \(\Delta_2=x+y-1=0\)

(C): x^2+y^2+4x-2y-4=0

=>(x+2)^2+(y-1)^2=9

=>I(-2;1); R=3

M thuộc d nên M(a;1-a)

M nằm ngoài (C) nên IM>R

=>IM^2>9

=>2a^2+4a-5>0

MA^2=MB^2=IM^2-IA^2=(a+2)^2+(-a)^2-9=2a^2+4a-5

=>x^2+y^2-2ax+2(a-1)y-6a+6=0(1)

A,B thuộc (C)

=>Tọa độ A,B thỏa mãn phương trình:

 x^2+y^2+4x-2y-4=0(2)

(1)-(2)=(a+2)x-ay+3a-5=0(3)

Tọa độ A,B thỏa mãn (3) nên (3) chính là phương trình đường thẳng AB

(E) tiếp xúc AB nên (E): R1=d(E,AB)

Chu vi của (E) lớn nhất khi R1 lớn nhất

=>d(E;AB) lớn nhất

Gọi H là hình chiếu vuông góc của E lên AB

=>d(E,Δ)=EH<=EK=căn 10/2

Dấu = xảy ra khi H trùng K

=>AB vuông góc EK

vecto EK=(-1/2;3/2), AB có VTCP là (a;a+2)

AB vuông góc EK

=>-1/2a+3/2(a+2)=0

=>a=-3

=>M(-3;4)

I thuộc Δ nên I(-2y+2;y)

Theo đề, ta có: IA=IB

=>IA^2=IB^2

=>(-2y+2-1)^2+(y+1)^2=(-2y+2-4)^2+(y-2)^2

=>(2y-1)^2+(y+1)^2=(2y+2)^2+(y-2)^2

=>4y^2-4y+1+y^2+2y+1=4y^2+8y+4+y^2-4y+4

=>-2y+2=4y+8

=>-6y=-6

=>y=1

=>I(0;1)

I(0;1); A(1;-1)

=>IA=căn (1-0)^2+(-1-1)^2=căn 5

Phương trình của (C) là:
(x-0)^2+(y-1)^2=R^2=5

Tâm I nằm trên Δ nên I(x;3x-4)

IA=IB

=>(x+1)^2+(3x-4-3)^2=(x-1)^2+(3x-9)^2

=>x^2+2x+1+9x^2-42x+49=x^2-2x+1+9x^2-54x+81

=>-40x+50=-56x+82

=>16x=32

=>x=2

=>I(2;2)

R=IA=căn (2+1)^2+(3-2)^2=căn 10

(C): (x-2)^2+(y-2)^2=10

a: Xét ΔABC và ΔADB có

góc ABC=góc ADB

góc BAC chung

=>ΔABC đòng dạng với ΔADB

=>AB/AD=AC/AB

=>AB^2=AD*AC

b: góc AMO=góc ABO=90 độ

=>ABMO nội tiếp, I là trung điểm của AO