K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
18 tháng 6 2019

Tâm đường tròn \(I\left(1;1\right)\) bán kính \(R=5\)

\(d\left(I;\Delta\right)=\frac{\left|3-4-19\right|}{\sqrt{3^2+4^2}}=4\)

\(\Rightarrow AB=2\sqrt{R^2-d^2\left(I;\Delta\right)}=2\sqrt{5^2-4^2}=6\)

11 tháng 4 2016

Tọa độ điểm A, B là nghiệm của hệ phương trình :

\(\begin{cases}\left(x+1\right)^2+\left(y-2\right)^2=13\\x-5y-2=0\end{cases}\)   \(\Leftrightarrow\begin{cases}26y^2+26y=0\\x=5y+2\end{cases}\)

                                            \(\Leftrightarrow\begin{cases}\begin{cases}x=2\\y=0\end{cases}\\\begin{cases}x=-3\\y=-1\end{cases}\end{cases}\)
\(\Rightarrow A\left(2;0\right);B\left(-3;-1\right)\) hoặc \(A\left(-3;-1\right);B\left(2;0\right)\)

Vì tam giác ABC vuông tại B và nội tiếp đường tròn (C) nên AC là đường kính của đường tròn (C). Hay tâm \(I\left(-1;2\right)\) là trung điểm của AC

Khi đó : \(A\left(2;0\right);B\left(-3;-1\right)\Rightarrow C\left(-4;4\right)\)

            \(A\left(-3;-1\right);B\left(2;0\right)\Rightarrow C\left(1;5\right)\)

Vậy \(C\left(-4;4\right)\) hoặc \(C\left(1;5\right)\)

18 tháng 7 2017

Phương trình tổng quát \(\Delta\):

\(\dfrac{x-2}{2}=\dfrac{y-3}{1}\)=> x-2y+4=0

a. Vì M \(\in\) \(\Delta\)=> M (2y-4;y)

Theo giả thiết, MA=5 <=> \(\sqrt{(-2y+4)^{2}+(1-y)^{2}}\)=5

<=> \(5y^2-18y-8=0\)

<=>y=4 và y=\(\dfrac{-2}{5}\)

Vậy M1(4;4) và M2(\(\dfrac{-24}{5};\dfrac{-2}{5}\))

b. Gọi I là tọa độ giao điểm của đường thẳng \(\Delta\)với đường thẳng (d): x+y+1=0

Ta có hệ phương trình:

\(\begin{cases} x-2y+4=0\\ x+y+1=0 \end{cases}\)

\(\begin{cases} x=-2\\ y=1 \end{cases}\)

=> I(-2;1) là giao điểm của đường thẳng \(\Delta\)với đường thẳng d

c. Nhận thấy, điểm A\(\notin\)\(\Delta\)

Để AM ngắn nhất <=> M là hình chiếu của A trên đường thẳng \(\Delta\)

Vì M\(\in\Delta\)=> M(2y-4;y)

Ta có: Vectơ chỉ phương của \(\overrightarrow{AM}\)\(\overrightarrow{u}\)(2;1)

\(\overrightarrow{AM}\) (2y-4;y-1)

Vì A là hình chiếu của A trên \(\Delta\)nên \(\overrightarrow{AM}\)\(\perp\Delta\)

<=> \(\overrightarrow{AM}\)\(\perp\overrightarrow{u}\)

<=> \(\begin{matrix}\overrightarrow{AM}&\overrightarrow{u}\end{matrix}\) =0

<=> 2(2y-4)+(y-1)=0

<=> 5y-9=0

<=> y= \(\dfrac{9}{5}\)

=> B (\(\dfrac{-2}{5}\);\(\dfrac{4}{5}\))

31 tháng 5 2017

a) (E) có tiêu điểm \({F_1}\left( { - \sqrt 3 ;0} \right)\) nên \(c = \sqrt 3\).

Phương trình chính tăc của (E) có dạng

\({{{x^2}} \over {{a^2}}} + {{{y^2}} \over {{b^2}}} = 1\)

Ta có: \(M\left( {1;{{\sqrt 3 } \over 2}} \right) \in (E)\)

\(\Rightarrow {1 \over {{a^2}}} + {3 \over {4{b^2}}} = 1\ (1)\)

\({a^2} = {b^2} + {c^2} = {b^2} + 3\)

Thay vào (1) ta được :

\(\eqalign{ & {1 \over {{b^2} + 3}} + {3 \over {4{b^2}}} = 1 \cr & \Leftrightarrow 4{b^2} + 3{b^2} + 9 = 4{b^2}(b + 3) \cr}\)

\(\Leftrightarrow 4{b^4} + 5{b^2} - 9 = 0 \Leftrightarrow {b^2} = 1\)

Suy ra \({a^2} = 4\)

Ta có a = 2 ; b = 1.

Vậy (E) có bốn đỉnh là : (-2 ; 0), (2 ; 0)

(0 ; -1) và (0 ; 1).

b) Phương trình chính tắc của (E) là :

\({{{x^2}} \over 4} + {{{y^2}} \over 1} = 1\)

c) (E) có tiêu điểm thứ hai là điểm \(\left( {\sqrt 3 ;0} \right)\). Đường thẳng \(\Delta\) đi qua điểm\(\left( {\sqrt 3 ;0} \right)\) và vuông góc với Ox có phương trình \(x = \sqrt 3\).

Phương trình tung độ giao điểm của \(\Delta\)\((E)\) là :

\({3 \over 4} + {{{y^2}} \over 1} = 1 \Leftrightarrow {y^2} = \pm {1 \over 2}\)

Suy ra tọa độ của C và D là :

\(C\left( {\sqrt 3 ; - {1 \over 2}} \right)\)\(\left( {\sqrt 3 ;{1 \over 2}} \right)\)

Vậy CD = 1.

20 tháng 5 2017

Đường tròn (C) có tâm \(I\left(1;2\right)\) và có bán kính \(R=2\)

Ôn tập cuối năm môn Hình học

26 tháng 4 2017

a) Ta có: d(M;\(\Delta\))=\(\dfrac{\left|3.1+4.2-1\right|}{\sqrt{3^2+4^2}}=2\)

PTTS của \(\Delta\):\(\left\{{}\begin{matrix}x=4t-1\\y=3t-1\end{matrix}\right.\)

Gọi H là hình chiếu của M trên\(\Delta\)=>\(\exists t\in R\)để H(4t-1;3t-1)

MH=2 =>(4t-2)2+(3t+1)2=4

<=>25t2+10t+1=0

<=>(5t+1)2=0

<=>\(t=-\dfrac{1}{5}\)

=>H\(\left(-\dfrac{9}{5};-\dfrac{8}{5}\right)\)

M' đối xứng với M qua \(\Delta\)=> H là TĐ của MM'

=>tọa độ M'\(\left(-\dfrac{23}{5};-\dfrac{6}{5}\right)\)

b)\(\Delta'\)đối xứng \(\Delta\)qua M=>VTPT của \(\Delta'\)\(\overrightarrow{n}=\left(3;-4\right)\)(1)

Lấy I(-1;-1) => I thuộc \(\Delta\)

Lấy I' đối xứng I qua M=>I'(3;-3) \(\in\Delta'\)(2)

Từ (1) và (2) => phương trình \(\Delta':\)3(x-3)-4(y+3)=0

hay 3x-4y-21=0

c)Đường tròn (C) có tâm M(1;-2) tiếp xúc \(\Delta\)=> bán kính đường tròn bằng \(d_{\left(M;\Delta\right)}\)=2

=>Phương trình đường tròn:

(C): (x-1)2+(y+2)2=4

22 tháng 4 2017

Đường tròn tâm O(a,b)

\(\Delta_1\) đi qua \(AB..\Delta_1:\left(x-1\right)-\left(y-2\right)=x-y+1=0\)

\(\Delta_2\) trung trực AB: \(\Delta_2:\left(x-2\right)+\left(y-3\right)=x+y-5=0\)

Tâm (c) phải thuộc \(\Delta_2\) =>O(a,5-a)

Gọi I là điểm tiếp xúc \(\Delta\) và (C) ta có hệ pt

\(\Rightarrow\left\{{}\begin{matrix}OA=OB=\sqrt{\left(a-1\right)^2+\left(5-a-3\right)^2}=R\\OI=\left|3a+\left(5-a\right)-3\right|=\sqrt{10}R\end{matrix}\right.\)

\(\left\{{}\begin{matrix}a^2-2a+1+a^2-4a+4=R^2\\\left(2a+2\right)^2=10R^2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2a^2-6a+5=R^2\\4a^2+8a+4=10R^2\end{matrix}\right.\)

Lấy [(1) nhân 5] trừ [(2) chia 2]

\(\Leftrightarrow8a^2-32a+23=0\left\{\Delta=16^2-8.23=8.32-8.23=8\left(32-23\right)=2.4.9\right\}\) đề số lẻ thế nhỉ

\(\Rightarrow a=\left[{}\begin{matrix}\dfrac{16-6\sqrt{2}}{8}=2-\dfrac{3\sqrt{2}}{4}\\\dfrac{16+6\sqrt{2}}{8}=2+\dfrac{3\sqrt{2}}{4}\end{matrix}\right.\)

\(\Rightarrow b=\left[{}\begin{matrix}3+\dfrac{3\sqrt{2}}{4}\\3-\dfrac{3\sqrt{2}}{4}\end{matrix}\right.\) \(\Rightarrow R^2=\left[{}\begin{matrix}\dfrac{\left(6-\dfrac{3\sqrt{2}}{2}\right)^2}{10}\\\dfrac{\left(6+\dfrac{3\sqrt{2}}{2}\right)^2}{10}\end{matrix}\right.\)

(C) =(x-2+3sqrt(2)/4)^2 +(y-3-3sqrt(2)/4)^2 =(6-3sqrt(2)/2)^2/10

20 tháng 5 2017

Phương pháp tọa độ trong mặt phẳng