K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 5 2019

Đáp án D

24 tháng 11 2016

Câu hỏi của Yến Nhi - Toán lớp 6 | Học trực tuyến

27 tháng 11 2019

toán lớp 6 thì có liên quan gì đến toán lớp 10

25 tháng 4 2017

Ta có \(M\in\Delta_1\Rightarrow M\left(2t+3;t\right)\)

.

Khoảng cách từ M đến đường thẳng \(\Delta_2\)bằng \(\dfrac{1}{\sqrt{2}}\)

\(\Rightarrow\)\(d\left(M,\Delta_2\right)=\dfrac{1}{\sqrt{2}}\)

\(\Leftrightarrow\dfrac{\left|2t+3+t+1\right|}{\sqrt{1^2+1^2}}=\dfrac{1}{\sqrt{2}}\)

\(\Leftrightarrow\left|3t+4\right|=1\)\(\Leftrightarrow\left[{}\begin{matrix}t=-1\\t=\dfrac{-5}{3}\end{matrix}\right.\)

* \(t=-1\)

\(\Rightarrow M\left(1;-1\right)\)

*\(t=\dfrac{-5}{3}\)

\(\Rightarrow M\left(\dfrac{-1}{3};\dfrac{-5}{3}\right)\)

NV
8 tháng 5 2020

\(\Delta_1\) nhận \(\left(2;1\right)\) là 1 vppt; \(\Delta_2\) nhận \(\left(1;m\right)\) là 1 vtpt

a/ Để 2 đường thẳng song song \(\Rightarrow2m=1\Rightarrow m=\frac{1}{2}\)

Khi đó pt \(\Delta_2\) viết lại: \(2x+y+2=0\)

Khoảng cách 2 đường thẳng: \(d=\frac{\left|c_1-c_2\right|}{\sqrt{a^2+b^2}}=\frac{\left|-3-2\right|}{\sqrt{2^2+1^2}}=\sqrt{5}\)

b/Với \(m=2\Rightarrow\Delta_2\) nhận \(\left(1;2\right)\) là 1 vtpt

\(cos\left(\Delta_1;\Delta_2\right)=\frac{\left|2.1+1.2\right|}{\sqrt{2^2+1^2}.\sqrt{1^2+2^2}}=\frac{4}{5}\)

\(\Rightarrow sin\left(\Delta_1;\Delta_2\right)=\sqrt{1-\left(\frac{4}{5}\right)^2}=\frac{3}{5}\)

c/ Chắc là k/c từ gốc O

\(d\left(O;\Delta_1\right)=\frac{\left|2.0+1.0-3\right|}{\sqrt{2^2+1^2}}=\frac{3}{\sqrt{5}}\)

\(d\left(O;\Delta_2\right)=\frac{\left|1.0+m.0+1\right|}{\sqrt{1+m^2}}=\frac{1}{\sqrt{1+m^2}}\)

\(\Rightarrow\frac{1}{\sqrt{1+m^2}}=\frac{6}{\sqrt{5}}\Leftrightarrow1+m^2=\frac{5}{36}\Leftrightarrow m^2=-\frac{29}{36}< 0\)

Không tồn tại m thỏa mãn

d/ I là điểm nào bạn?

8 tháng 5 2020

Mình nhầm ạ. Đấy là H

a) Tìm tất cả các giá trị của tham số m đẻ khoảng cách từ giao điểm của hai đường thẳng  \(d_1:\left\{{}\begin{matrix}x=t\\y=2-t\end{matrix}\right.\) và \(d_2:x-2y+m=0\) đến gốc tọa độ bằng 2      b) Trong mp xOy cho hai điểm A(2;3) B(1;4)  . Đường thẳng cách đều hai điểm là             c)    Trong mp xOy cho hai điểm A(0;1) B(12;5)  C(-3;0). Đường thẳng cách đều ba điểm là                 ...
Đọc tiếp

a) Tìm tất cả các giá trị của tham số m đẻ khoảng cách từ giao điểm của hai đường thẳng  \(d_1:\left\{{}\begin{matrix}x=t\\y=2-t\end{matrix}\right.\) và \(d_2:x-2y+m=0\) đến gốc tọa độ bằng 2     

b) Trong mp xOy cho hai điểm A(2;3) B(1;4)  . Đường thẳng cách đều hai điểm là            

c)    Trong mp xOy cho hai điểm A(0;1) B(12;5)  C(-3;0). Đường thẳng cách đều ba điểm là                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    

1
NV
30 tháng 3 2021

Gọi giao điểm là A, thay tọa độ tham số d1 vào d2:

\(t-2\left(2-t\right)+m=0\Leftrightarrow3t+m-4=0\Rightarrow t=\dfrac{-m+4}{3}\)

\(\Rightarrow A\left(\dfrac{-m+4}{3};\dfrac{m+2}{3}\right)\)

\(\Rightarrow OA=\sqrt{\left(\dfrac{-m+4}{3}\right)^2+\left(\dfrac{m+2}{3}\right)^2}=2\)

\(\Leftrightarrow m^2-2m-8=0\Rightarrow\left[{}\begin{matrix}m=4\\m=-2\end{matrix}\right.\)

b. Bạn không đưa 4 đáp án thì không ai trả lời được câu hỏi này. Có vô số đường thẳng cách đều 2 điểm, chia làm 2 loại: các đường thẳng song song với AB và các đường thẳng đi qua trung điểm của AB

c. Tương tự câu b, do 3 điểm ABC thẳng hàng nên có vô số đường thẳng thỏa mãn, là các đường thẳng song song với AB

30 tháng 3 2021

b) 

A. x-y+2=0

B. x+2y=0

C.2x-2y+10=0

D. x-y+100=0

c)

A. x-3y+4=0

B. -x+y+10=0

C. x+y=0

D. 5x-y+1=0

HQ
Hà Quang Minh
Giáo viên
29 tháng 9 2023

a)  Từ phương trình tổng quát của đường thẳng, ta lấy được một vecto pháp tuyến là: \(\overrightarrow n  = \left( {1; - 2} \right)\) nên ta chọn vecto chỉ phương của đường thẳng d là: \(\overrightarrow u  = \left( {2;1} \right)\).

 Chọn điểm \(A\left( {1; - 2} \right) \in d\).Vậy phương trình tham số của đường thẳng d là: \(\left\{ \begin{array}{l}x = 1 + 2t\\y =  - 2 + t\end{array} \right.\) (t là tham số)

b)  Do điểm M thuộc d nên ta có: \(M\left( {1 + 2m; - 2 + m} \right);m \in \mathbb{R}\).

 Ta có: \(OM = 5 \Leftrightarrow \sqrt {{{\left( {1 + 2m} \right)}^2} + {{\left( { - 2 + m} \right)}^2}}  = 5 \Leftrightarrow {m^2} = 4 \Leftrightarrow m =  \pm 2\)

 Với \(m = 2 \Rightarrow M\left( {5;0} \right)\)

 Với \(m =  - 2 \Rightarrow M\left( { - 3; - 4} \right)\)

 Vậy ta có 2 điểm M thỏa mãn điều kiện đề bài.

c)  Do điểm N thuộc d nên ta có: \(N\left( {1 + 2n; - 2 + n} \right)\)

 Khoảng cách từ N đến trục hoành bằng giá trị tuyệt đối của tung độ điểm N. Do đó, khoảng cách tư N đến trục hoành bằng 3 khi và chỉ khi: \(\left| { - 2 + n} \right| = 3 \Leftrightarrow \left[ \begin{array}{l}n = 5\\n =  - 1\end{array} \right.\)

 Với \(n = 5 \Rightarrow N\left( {11;3} \right)\)

 Với \(n =  - 1 \Rightarrow N\left( { - 1; - 3} \right)\)

 Vậy có 2 điểm N thỏa mãn bài toán