K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 3 2019

Đáp án A

15 tháng 3 2019

12 tháng 3 2020

x C A O B K y D

Gọi K là giao điểm của CO và BD

Xét \(\Delta\)AOC và \(\Delta\)BOK có :

AO = BO(gt)

\(\widehat{OAC}=\widehat{OBK}\left(=90^0\right)\)

\(\widehat{O}\)chung

=> \(\Delta\)AOC = \(\Delta\)BOK(g.c.g)

=> OC = OK(hai cạnh tương ứng)

     AC = BK(hai cạnh tương ứng)

Xét \(\Delta\)COD và \(\Delta\)KOD có :

CO = KO(gt)

\(\widehat{OCD}=\widehat{OKD}\left(=90^0\right)\)

OD cạnh chung

=> \(\Delta\)COD = \(\Delta\)KOD(c.g.c)

=> CD = KD(hai cạnh tương ứng)

Do đó : CD = DB + BK = DB + AC

11 tháng 2 2016

hình như trong sách nâng cao và phát triển có đấy cậu à

17 tháng 5 2021

\(a)\)

Theo đề ra: \(AM=\frac{1}{3}MB\)

\(\rightarrow AM+MB=AB\)

\(\rightarrow\frac{1}{3}MB+\frac{3}{4}MB=AB\)

\(\rightarrow MA=8:4=2\)

\(MB=8-2=6\)

\(MC=\sqrt{MA^2+CA^2}=\sqrt{13}\)

\(MD=\sqrt{MB^2+BD^2}=2\sqrt{13}\)

\(CD=\sqrt{MC^2+MD^2}=\sqrt{65}\)

\(b)\)

\(MC^2+MD^2=13+52=65\)

\(CD^2=65\)

\(\rightarrow MC^2+MD^2=CD^2\)

\(\rightarrow MCD\text{ }\)\(\text{là tam giác vuông}\)

17 tháng 5 2021

C A M B D H